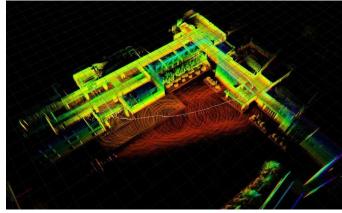
Bei Ouyang^{* 1}, Shengyuan Ye^{* 1}, Liekang Zeng², Tianyi Qian¹, Jingyi Li¹, Xu Chen^{†1}

¹Sun Yat-sen University, ²HKUST(GZ)

Intelligent edge applications

Transformer-based models driven increasing intelligent applications.

Intelligent personal assistants

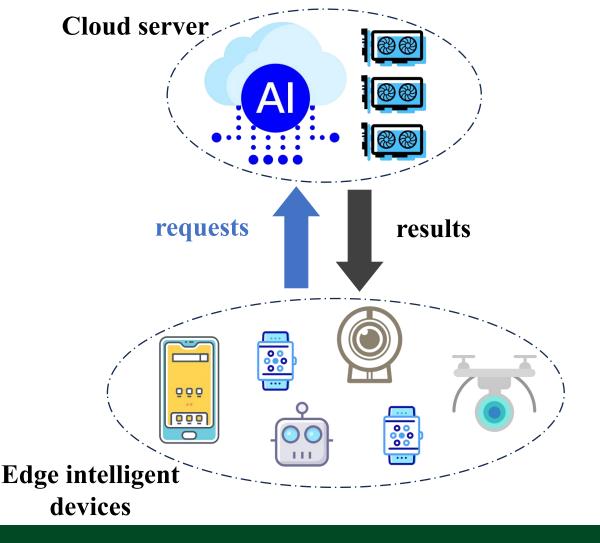


Intelligent robots/aircraft

AR&VR applications

Problems of cloud-assisted approaches

Current Transformer-based applications heavily depend on cloud services.



The advantage of cloud service

Powerful and scalable computing resources

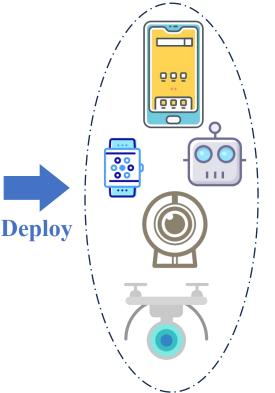
Three issues with cloud service

- 1 Data privacy and security issues.
- **Unreliable WAN connections.**
- 1 Network and datacenter pressure.

On-device deployment

On-device deployment becomes a promising paradigm for intelligent edge APPs.

Transformer-based intelligent applications



Protect date privacy.

Without WAN transmission.

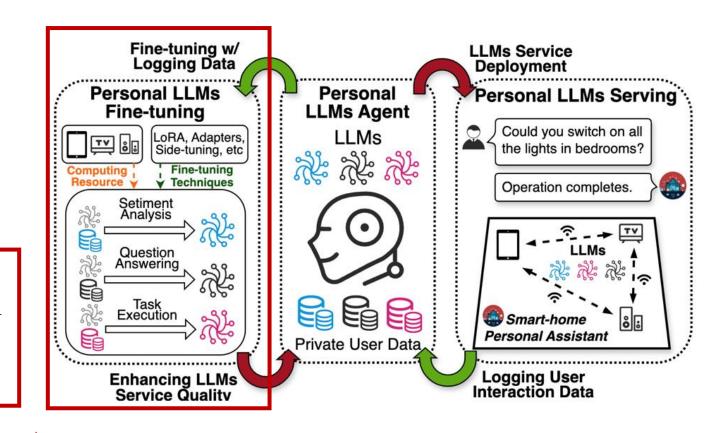
Limited and non-scalable onboard computing resources

An example of hosting personal LLM-based intelligent agents

Workflow

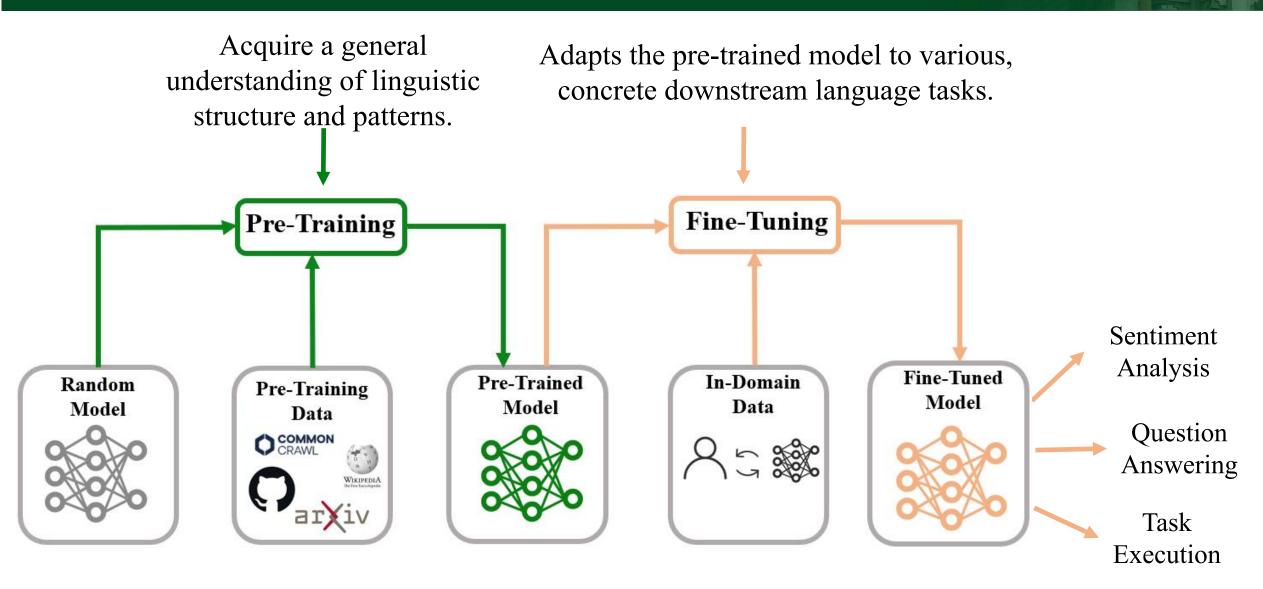
(Serving): Deploy personalized large language model inference services to provide intelligent applications.

(Fine-tuning): Collect user data generated during the serving process and periodically fine-tune the LLMs to enhance performance.



Focus of our work: personal LLMs fine-tuning at edge.

Transformer-Based LLMs and Fine-Tuning



學大山中立國

Parameter-efficient finetuning (PEFT) techniques

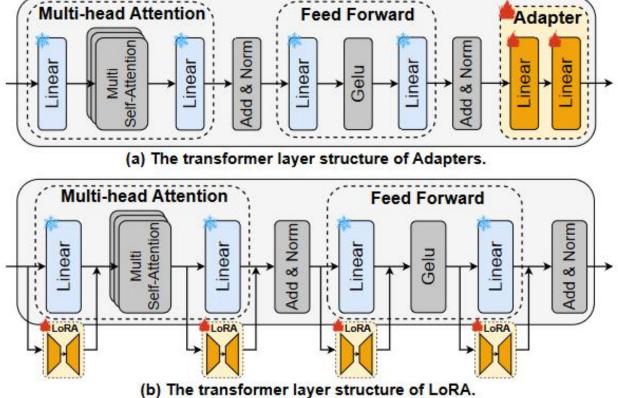
 Parameter-efficient fine-tuning: only fine-tune a small number of (extra) model parameters.

Operators w/

frozen parameters

Adapters: inserts compact bottleneck modules at the end of each transformer layer.

➤ LoRA: injects trainable low-rank matrices into a frozen pre-trained model.



Operators w/

trainable parameters

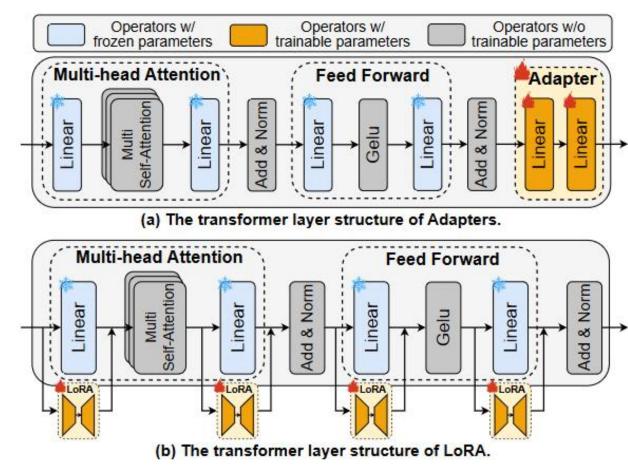
Operators w/o

trainable parameters

Parameter-efficient finetuning (PEFT) techniques

Benefits of PEFT techniques:

- > Resource efficiency.
- > Portability.
- ➤ Performance comparable to full fine-tuning.



- PEFT techniques are not resource-efficient enough for edge environments.
- Adapters and LoRA exhibit a limited reduction in computation (around 30%).

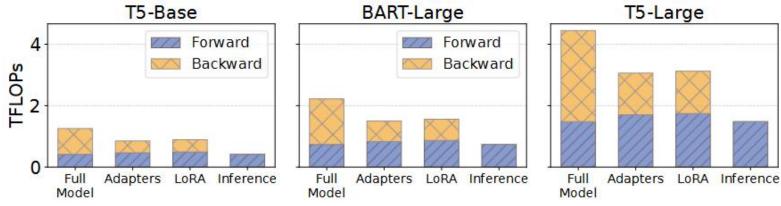
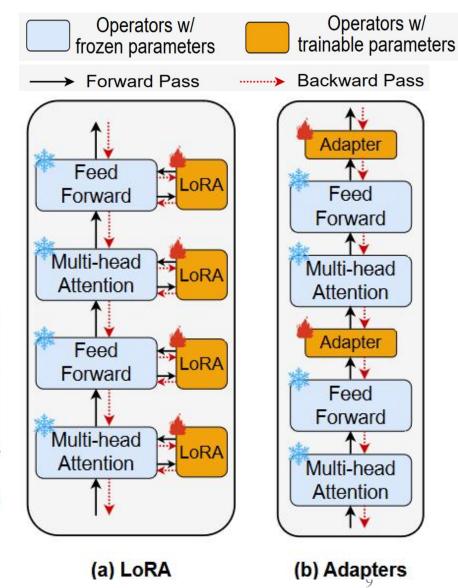


Figure 3: The comparison of floating point of operations (FLOPs). Mini-batch size: 16; sequence length: 128.

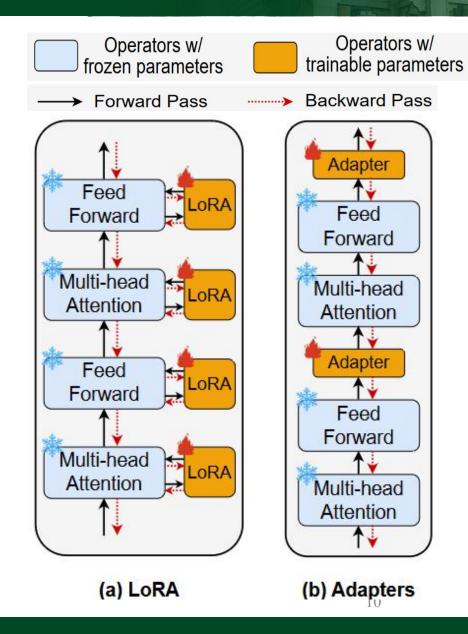


學大山中立國

- PEFT techniques are not resource-efficient enough for edge environments.
- Adapters and LoRA exhibit a with a maximum reduction of only 36% in memory.

Tashnisusa	Trainable	Memory Footprint (GB)								
Techniques	Parameters	Weights	Activations	Gradients	Total					
Full	737M (100%)	2.75 5.33		2.75	10.83					
Adapters	12M (1.70 %)	2.80	4.04	0.05	6.89					
LoRA	9M (1.26%)	2.78	4.31	0.04	7.13					
Inference	/	2.75	/	/	2.75					

Table 1: The breakdown of memory footprint. "Activations" contain the intermediate results and optimizer states. Model: T5-Large; mini-batch size: 16; sequence length: 128.



學大山中立國

Constrained and non-scalable on-board resources.

> The computational capabilities of edge devices are constrained.

TABLE I
INFERENCE LATENCY AND MEM. FOOTPRINT OF TRANSFORMER MODELS

Model	DistilBert	Bert-L	GPT2-L	OPT-L	OPT-XL
Nano-M	0.37s	2.43s	OOM	OOM	OOM
Nvidia A100	5ms	20ms	29ms	27ms	38ms
Memory Footprint	130MB	680MB	1.6GB	2.6GB	5.4GB

Device	Al
	Performance
Jetson Nano	472 GFLOPS
NVIDIA A100	312 TFLOPS

121x performance gap.

Constrained and non-scalable on-board resources.

➤ On-device fine-tuning is hindered by the memory wall.

Techniques	Trainable	Memory Footprint (GB)								
	Parameters	Weights	Activations	Gradients	Total					
Full	737M (100%)	2.75	5.33	2.75	10.83					
Adapters	12M (1.70 %)	2.80	4.04	0.05	6.89					
LoRA	9M (1.26%)	2.78	4.31	0.04	7.13					
Inference	/	2.75	/	/	2.75					

Device	Memory
Jetson Nano	4 GB
NVIDIA A100	40 GB/ 80 GB

Table 1: The breakdown of memory footprint. "Activations" contain the intermediate results and optimizer states. Model:

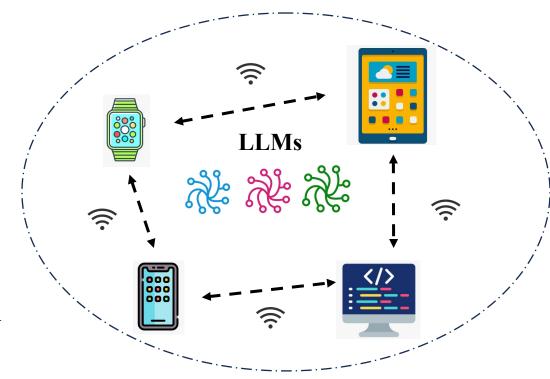
T5-Large; mini-batch size: 16; sequence length: 128.

Incurs a peak memory footprint that is often unaffordable for edge devices.

Opportunities

Edge environment often comprise a rich set of trusted idle edge devices.

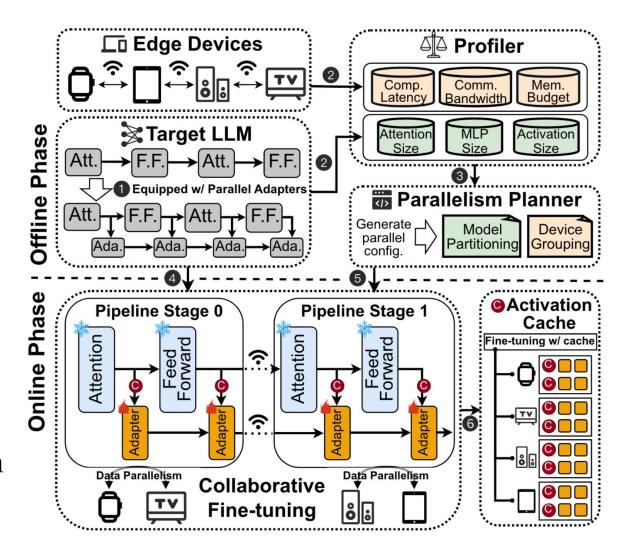
- Prevalent edge environments like smart homes usually comprise a group of trusted idle devices beyond a single terminal (e.g., mobile phones, laptops, and smart-home devices owned by the same user or family).
- These accompanying devices are typically in physical proximity and can be associated as a resource augmentation for in-situ personal LLMs fine-tuning.



Algorithm-system codesign

(Algorithm): In light of the side-tuning techniques, we employ not only parameter but also time and memory-efficient personal LLMs finetuning techniques with Parallel Adapters, which provides a dedicated gradient "highway" for the trainable parameters.

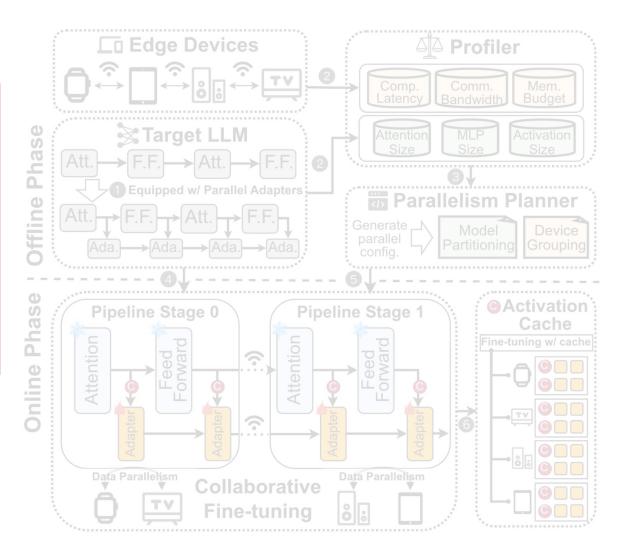
(System): We leverage edge devices in physical proximity and associate them as an edge resource pool for in-situ personal LLMs fine-tuning.



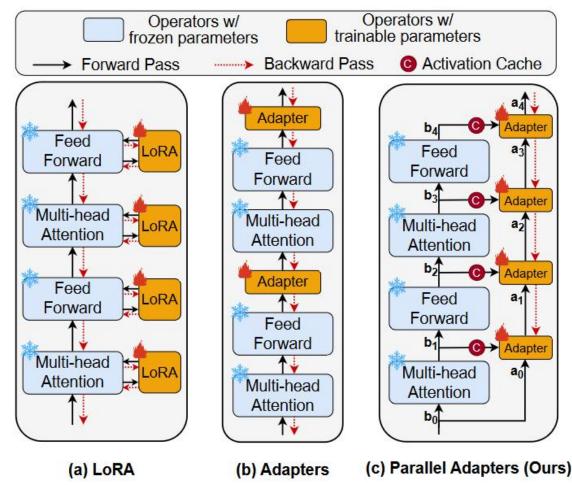
Algorithm-system codesign

(Algorithm): In light of the side-tuning techniques, we employ not only parameter but also time and memory-efficient personal LLMs finetuning techniques with Parallel Adapters, which provides a dedicated gradient "highway" for the trainable parameters.

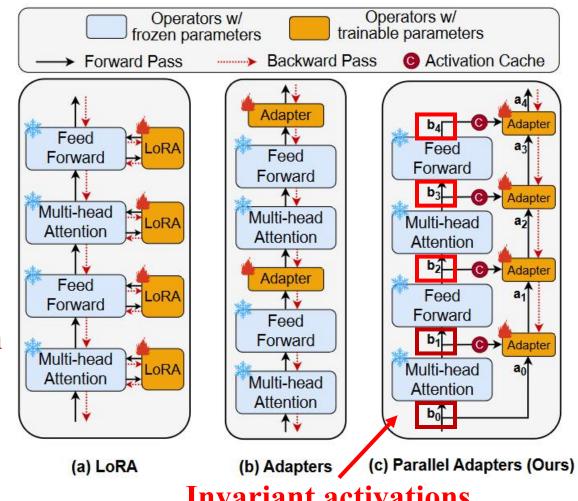
(System): We leverage edge devices in physical proximity and associate them as an edge resource pool for in-situ personal LLMs fine-tuning.



- > Fine-Tuning LLMs with Parallel Adapters
- The parameters of backbone transformer are frozen.
- Parallel adapters are a lightweight, separate network that takes the intermediate activations from the backbone LLM as input and generates predictions. (Skip the backward propagation from the LLM backbone!)



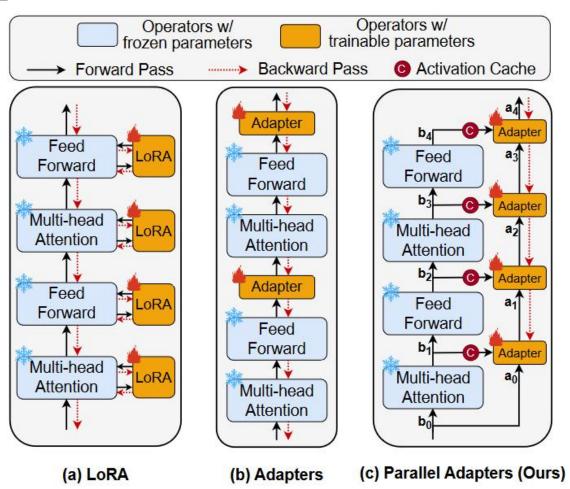
- > PAC Activation Cache for Parallel Adapters
- During the first epoch, when processing a new input sequence, cache all the input activations required by the Parallel Adapters that are obtained from the LLM backbone.
- In subsequent fine-tuning epochs using the same input sequence, we can reuse cached activations. (Skip the forward propagation from the LLM backbone!)



> PAC Activation Cache for Parallel Adapters

Skip both the forward and backward propagation through the LLM backbone entirely!

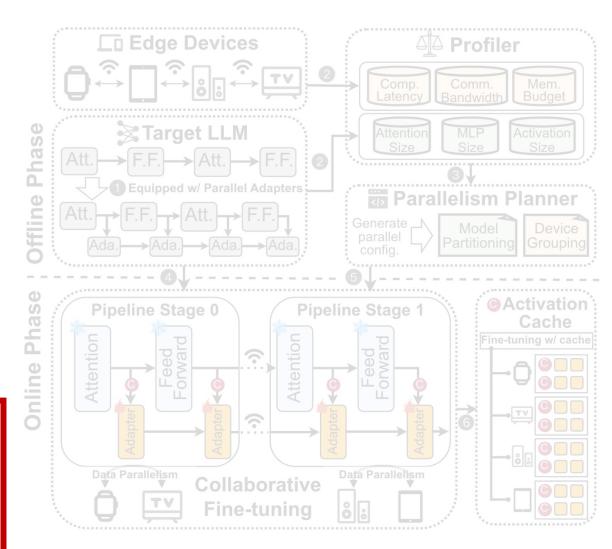
- Significantly accelerating the fine-tuning process.
- Reducing the memory footprint by allowing the release of the memory space occupied by the LLM parameters.



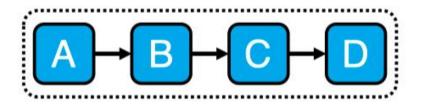
Algorithm-system codesign

(Algorithm): In light of the side-tuning techniques, we employ not only parameter but also time and memory-efficient personal LLMs finetuning techniques with Parallel Adapters, which provides a dedicated gradient "highway" for the trainable parameters.

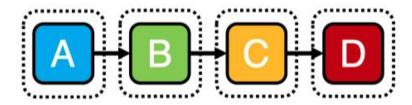
(System): We leverage edge devices in physical proximity and associate them as an edge resource pool for in-situ personal LLMs fine-tuning.



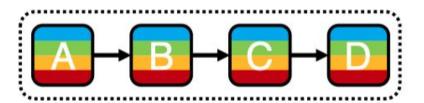
➤ Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning



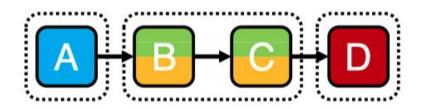
(1) Single device.



(3) Pipeline parallelism.



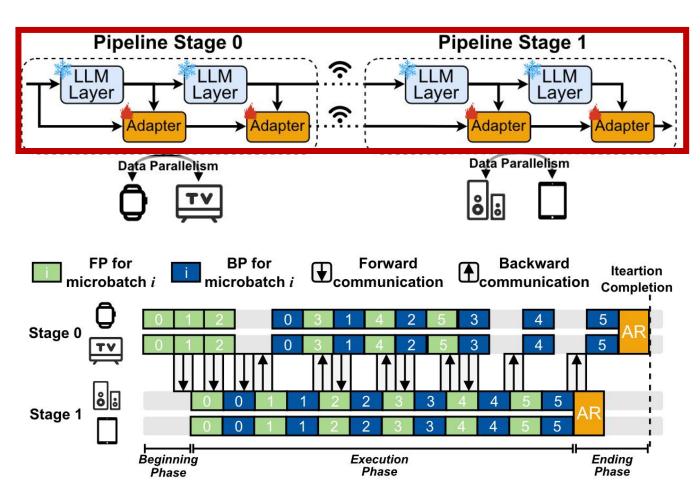
(2) Data parallelism.



(4) Data & pipeline hybrid parallelism.

➤ Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning

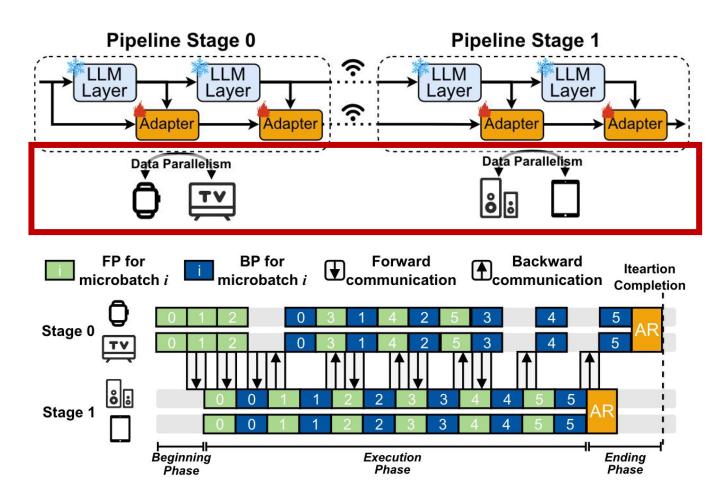
Step1: LLMs model partitioning.



➤ Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning

Step1: LLMs model partitioning.

Step2: Edge devices grouping.

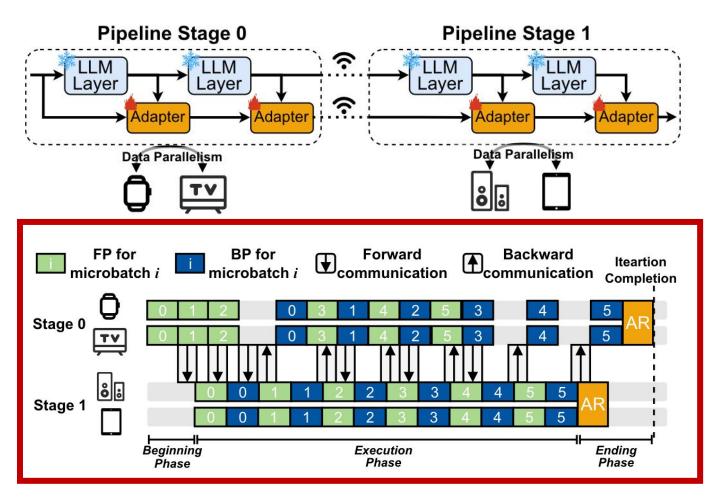


➤ Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning

Step1: LLMs model partitioning.

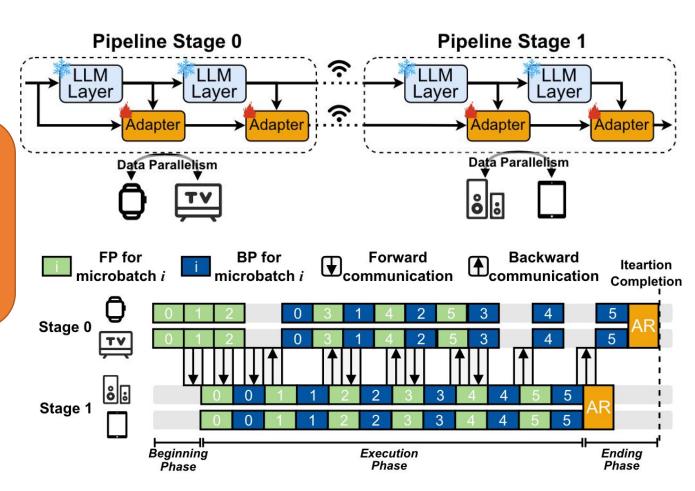
Step2: Edge devices grouping.

Step3: Conduct data and pipeline parallel fine-tuning.



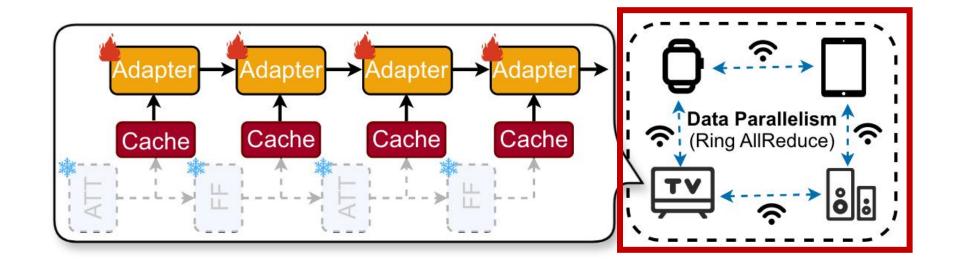
➤ Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning

We design a dynamic programming algorithm to search for the optimal partitioning method and device grouping method for LLMs.



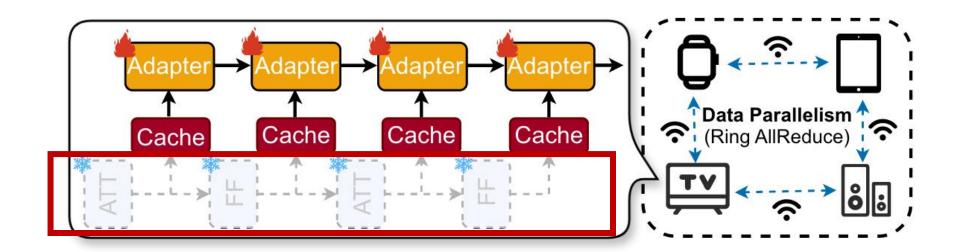
> Cache-Enabled Collaborative Edge Fine-Tuning of Parallel Adapters

Step 1: Perform collective communication to redistribute the Parallel Adapters' parameters and locally cached activations across all devices.



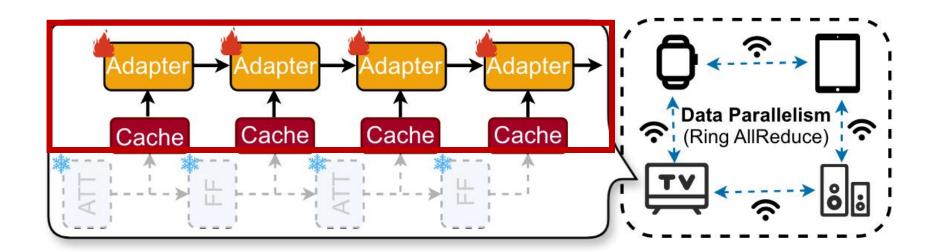
> Cache-Enabled Collaborative Edge Fine-Tuning of Parallel Adapters

Step 2: Release the memory usage of the backbone model by simply loading parallel adapters for fine-tuning.



> Cache-Enabled Collaborative Edge Fine-Tuning of Parallel Adapters

Step 3: The devices then utilize cached activations to fine-tune the parallel adapters in a data-parallel manner.



> Implementation and Setups

• Models:

Model	Structure	Layers	Heads	Hidden Size	Param. Count
T5-Base [20]	en-de	12	12	768	0.25B
BART-Large [13]	en-de	12	16	1024	0.41B
T5-Large [20]	en-de	24	16	1024	0.74B

- Edge Environment Setup:
 - 8 NVIDIA Jetson Nanos
 - network bandwidth: 1000Mbps

> Implementation and Setups

- Baseline Methods:
 - Standalone + Full model fine-tuning/Adapters/LoRA
 - Eco-FL (ICPP 2022) + Full model fine-tuning/Adapters/LoRA
 - EDDL (SEC 2021) + Full model fine-tuning/Adapters/LoRA

學大山中立國

> End-to-end Performance

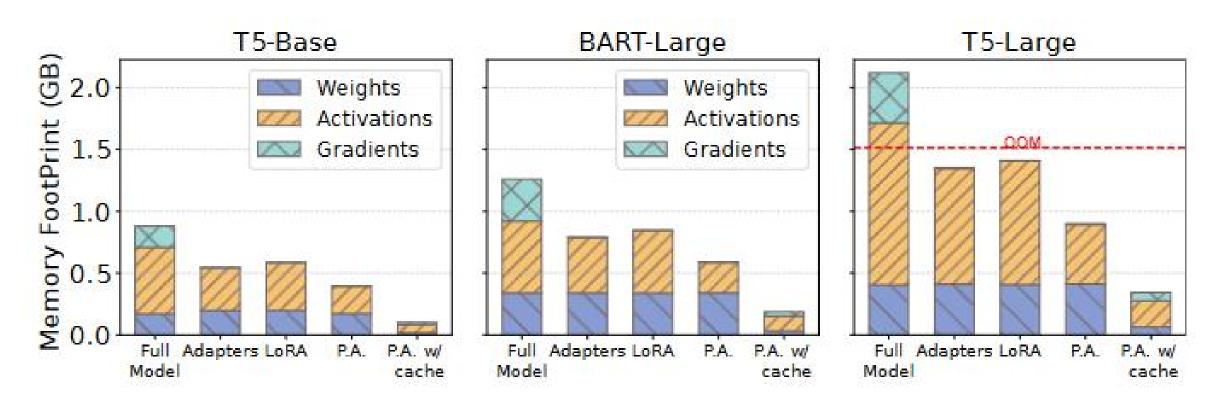
• PAC accelerates fine-tuning up to 8.64 × faster than existing state-of-the-art methods.

Table 2: Training durations (in hours) for different methods: 3 epochs for MRPC and STS-B, and 1 epoch for SST-2 and QNLI.

Fine-tuning	Baseline		T5-B	ase			BART-	Large			T5-L	arge	
Techniques	Methods	MRPC	STS-B	SST-2	QNLI	MRPC	STS-B	SST-2	QNLI	MRPC	STS-B	SST-2	QNLI
-	Standalone	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Full Model	Eco-FL	0.45	0.71	2.74	4.32	2.41	3.78	14.56	22.98	OOM	OOM	OOM	OOM
	EDDL	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
	Standalone	1.21	1.9	7.29	11.51	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Adapters	Eco-FL	0.39	0.61	2.35	3.71	0.54	0.85	3.27	5.16	2.75	4.31	16.59	26.19
	EDDL	0.34	0.53	2.06	3.25	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
	Standalone	1.21	1.89	7.28	11.49	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
LoRA	Eco-FL	0.41	0.64	2.45	3.87	0.55	0.87	3.33	5.26	2.73	4.28	16.48	26.02
	EDDL	0.31	0.48	1.86	2.94	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Parallel Adapters	PAC (Ours)	0.14	0.22	1.34	2.12	0.29	0.45	2.69	4.25	0.69	1.09	8.88	14.02

> End-to-end Performance

• PAC decrease the peak memory up to **88.16%** compared to baselines.



學大山中立國

> End-to-end Performance

• PAC can achieve **comparable or even superior** fine-tuned model performance.

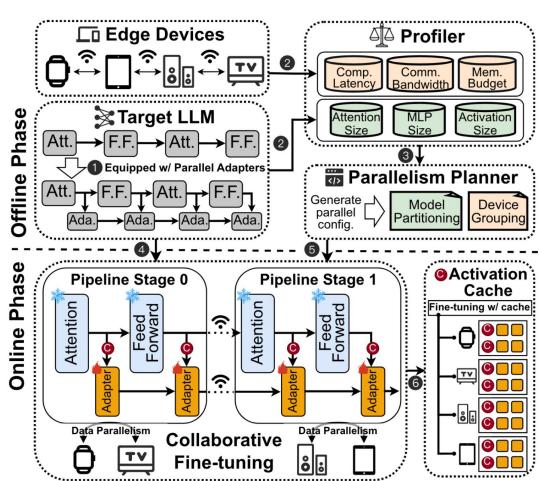
Fine-tuning		T5-B	ase			BART-Large				T5-Large			
Techniques	MRPC	STS-B	SST-2	QNLI	MRPC	STS-B	SST-2	QNLI	MRPC	STS-B	SST-2	QNLI	
Full Model	89.71	90.94	94.03	93.08	88.16	91.10	95.64	94.40	92.78	91.08	95.30	93.30	
Adapters	88.73	90.51	93.58	93.04	86.63	90.24	94.93	93.27	91.86	90.58	96.10	94.07	
LoRA	86.27	90.73	93.69	93.30	87.46	90.36	95.23	94.48	90.27	92.08	95.53	94.18	
Mean Value	88.24	90.73	93.77	93.14	87.42	90.57	95.27	94.05	91.64	91.25	95.64	93.85	
Parallel Adapters (Ours)	88.24	90.43	93.46	93.25	87.71	90.54	95.25	93.68	91.7	91.57	95.76	93.7	
Difference from Mean	+0.00	-0.30	-0.31	+0.11	+0.29	-0.03	-0.02	-0.37	+0.06	+0.32	+0.12	-0.15	

Conclusion

• PAC: a time and memory efficient collaborative edge AI framework for

personal LLMs fine-tuning.

- Algorithm-system co-design.
- \triangleright 8.64 × acceleration.
- > 88.16% memory reduction.



Thanks for listening

Bei Ouyang^{* 1}, Shengyuan Ye^{* 1}, Liekang Zeng², Tianyi Qian¹, Jingyi Li¹, Xu Chen^{†1}

¹Sun Yat-sen University, ²HKUST(GZ)

