
Jupiter: Fast and Resource-Efficient Collaborative
Inference of Generative LLMs on Edge Devices
Shengyuan Ye♦, Bei Ouyang♦, Liekang Zeng♢, Tianyi Qian♦, Xiaowen Chu▲, Jian Tang△, Xu Chen♦∗

♦School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
♢The Chinese University of Hong Kong, Hong Kong SAR, China

▲Data Science and Analytics Thrust, HKUST (Guangzhou), Guangzhou, China
△Midea Group, China

{yeshy8, ouyb9, qianty}@mail2.sysu.edu.cn, zenglk3@gmail.com
xwchu@ust.hk, tangjian22@midea.com, chenxu35@mail.sysu.edu.cn

Abstract—Generative large language models (LLMs) have
garnered significant attention due to their exceptional capabilities
in various AI tasks. Traditionally deployed in cloud datacenters,
LLMs are now increasingly moving towards more accessible
edge platforms to protect sensitive user data and ensure privacy
preservation. The limited computational resources of individual
edge devices, however, can result in excessively prolonged in-
ference latency and overwhelmed memory usage. While existing
research has explored collaborative edge computing to break the
resource wall of individual devices, these solutions yet suffer from
massive communication overhead and under-utilization of edge
resources. Furthermore, they focus exclusively on optimizing the
prefill phase, neglecting the crucial autoregressive decoding phase
for generative LLMs. To address that, we propose Jupiter,
a fast, scalable, and resource-efficient collaborative edge AI
system for generative LLM inference. Jupiter introduces a
flexible pipelined architecture as a principle and differentiates
its system design according to the differentiated characteristics
of the prefill and decoding phases. For prefill phase, Jupiter
submits a novel intra-sequence pipeline parallelism and develops
a meticulous parallelism planning strategy to maximize resource
efficiency; For decoding, Jupiter devises an effective outline-
based pipeline parallel decoding mechanism combined with spec-
ulative decoding, which further magnifies inference acceleration.
Extensive evaluation based on realistic implementation demon-
strates that Jupiter remarkably outperforms state-of-the-art
approaches under various edge environment setups, achieving
up to 26.1× end-to-end latency reduction while rendering on-
par generation quality.

I. INTRODUCTION

The emergence of generative large language models (LLMs)
has attracted widespread attention from both industry and
academia owing to their exceptional capabilities in a wide
range of artificial intelligence (AI) tasks. These models, widely
deployed in cloud datacenters equipped with powerful server-
grade GPUs, have driven increasing intelligent edge applica-
tions such as ChatBot [1] and smart-home AI agent [2]. While
born on datacenter warehouse, there is an emerging trend of
serving LLMs on more accessible edge platforms rather than
uploading requests to remote clouds owned by commercial
companies, owing to the sensitive and privacy-critical nature of
user data. A recent survey [3] on LLM-based edge applications

∗Corresponding authors.

Fig. 1. Collaborative LLMs inference in smart home empowered by Jupiter.

has revealed that over 80% of industry experts believe personal
LLMs should be fully or primarily hosted at the edge to ensure
privacy-preserving model inference.

However, hosting computation-intensive and resource-
hungry LLMs at the edge is significantly challenging due
to the limited resources of individual edge devices, leading
to prolonged inference latency and overwhelmed memory
footprint. To address this, some pioneering research [4]–[7]
alternatively observe that common edge environments, such
as smart homes, usually comprise a variety of trusted idle
devices in physical proximity (e.g., phones, laptops, and smart-
home devices) that are often connected to the same local
area network (LAN). This motivates us to consider them as a
collaborative edge resource pool to facilitate in-situ expedited
and resource-efficient LLM inference, as depicted in Fig. 1.

Motivated by above insight, researchers have proposed
different ways for LLM inference with collaborative edge
computing [8]–[10]. However, these approaches suffer from
significant limitations. In contrast to datacenter deployment,
in-situ LLM serving for edge applications mainly focuses
on low latency in processing a single input sequence (e.g.,
for the purpose of context/intention-aware intelligent control
or response in smart homes). Galaxy and its subsequent
works [8], [9] borrow ideas from tensor parallelism [11]
to achieve parallel acceleration of single-sequence inference
across multiple edge devices. However, these methods neces-

ar
X

iv
:2

50
4.

08
24

2v
1 

 [
cs

.D
C

] 
 1

1 
A

pr
 2

02
5



sitate multiple tensor synchronizations at each decoder layer to
ensure inference correctness, making communication latency a
bottleneck under low-bandwidth edge environments. Other few
works, such as EdgeShard [10], leverage pipelined architecture
[12] to orchestrate collaborative edge devices. However, in
single-sequence request scenarios, it ultimately degrades to
sequential inference, failing to leverage the computational
resources of multiple edge devices concurrently. Furthermore,
all the aforementioned works have focused exclusively on
optimizing the prefill phase, neglecting the decoding phase,
which is also crucial for generative LLMs.

In this paper, we address the limitations of existing systems
by introducing Jupiter, a fast, scalable, and resource-
efficient collaborative edge AI system for generative LLM
inference, guided by the following design goals: (1) Enable
parallel acceleration of single-sequence inference during both
prefill and decoding phases. (2) Reduce memory footprint per
device by distributing LLM parameters across participating
devices. (3) Minimize tensor exchanges to ensure robust
inference performance in low-bandwidth edge environments.

To achieve aforementioned design goals, we eschew tensor
parallelism but instead adopt a pipelined architecture as a
principle to orchestrate collaborative edge devices. This archi-
tecture assembles the memory of multiple edge devices to sup-
port the target LLM while maintaining high communication
efficiency, as devices exchange only a small set of activations
with their neighbors. To enable resource-efficient pipeline
parallel inference for single-sequence requests, we leverage the
key property of generative LLMs and propose a novel intra-
sequence pipeline parallelism method. To maximize resource
utilization, we introduce a novel dynamic programming-based
parallelism planning for optimal LLM and sequence partition-
ing, taking into account device heterogeneity, memory budget,
and varying input lengths. To conquer the parallelization of the
autoregressive decoding phase, we first incorporate the idea of
speculative decoding into our collaborative inference system to
enhance resource efficiency. Next, to further boost parallelism
potential by leveraging multiple edge devices concurrently, we
borrow the wisdom from human thinking and further introduce
an outline-based pipeline parallel decoding method. Exten-
sive evaluations on practical edge testbeds demonstrate that
Jupiter achieves up to 26.1× end-to-end latency reduction
compared to baselines while maintaining significant scalability
in bandwidth-limited environments.

In summary, this paper makes the following contributions.
• Through extensive measurement studies on existing edge

collaborative LLM inference systems, we advocate a
pipelined architecture as a principle to orchestrate edge
devices for fast generative LLM inference.

• We address the challenge of pipelined parallel acceleration
during the prefill phase by proposing an intra-sequence
pipeline parallelism method, combined with meticulous par-
allelism planning to maximize resource efficiency.

• We achieve parallel acceleration of the autoregressive de-
coding phase by integrating speculative decoding into our
collaborative inference system and introducing an outline-

Decoder

Decoder

Decoder

Decoder

Masked Multi-Head
Attention

Feed-Forward
Network

QKV Project

KVCache

 Embedding

Input
Sequence

Output
Sequence

Q K V

N
Decoder

Decoder N

KV
Cache

Next
Token

Prompt Input

Prefill Phase

Decoder N-1
...

Decoder 2

Decoder 1

Embedding

Large Language
Model

Iteration 1

LLM
Iteration 2

Decoder

Decoder

Decoder

Decoder

KV
Cache

Next
Token

LLM
Iteration 3

Decoding Phase

...

Hi, can you help me summarize
the main points of this article.

Input Sequence

Fig. 2. Left: The architecture of a decoder-based LLM. Right: An instance of
prefill and autoregressive decoding phases during generative LLMs inference.

based pipeline parallel decoding method that efficiently
utilizes multiple edge devices concurrently.

• We implement Jupiter and evaluate it in realistic edge
testbeds. Experimental results show up to 26.1× latency re-
duction over the state-of-the-art methods, while maintaining
significant scalability in bandwidth-limited environments.

II. MOTIVATION AND PRELIMINARIES

A. Decoder-Based Generative LLMs Architecture

Decoder-based LLMs, such as GPT-3 [13], LLaMa [14], and
Mistral [15], have revolutionized natural language processing
by enabling tasks ranging from simple text generation to
complex problem-solving and conversational AI. In this paper,
we focus on deploying these powerful generative models on
collaborative edge devices.

As shown in Fig. 2(Left), a typical decoder-based LLM
comprises input embeddings and multiple sequentially stacked
decoder layers. Each decoder layer contains several key mod-
ules: (1) QKV Project takes the input tokens and transforms
them into three distinct representations: queries (Q), keys
(K), and values (V). (2) Masked Multi-Head Attention (MHA)
performs self-attention for each head independently, concate-
nates their outputs, and processes them through a final linear
layer. Masking ensures each position only attends to previous
positions, maintaining the autoregressive property. (3) Feed-
Forward Network (FFN) involves two linear operations that
first expand the hidden size to a larger dimension and then
compress it back to its original size. (4) KVCache serves as
a dynamic repository where the keys and values of all the
previous tokens are typically memoized, allowing models to
access and reuse previously computed information expediently.

B. Generative LLMs Inference and KV Caching

Text generation with LLMs involves two main phases:
1) Prefill Phase: The initial delay after submitting a prompt

input (i.e., time-to-first-token) is the processing time during the
prefill phase, which occurs only once per input sequence. As
illustrated in Fig. 2(Right), the LLM first takes the prompt
sequence input and predicts a new token that serves as the
initial token for the decoding phase. The intermediate states,
including keys and values for each decoder layer, are stored
in the KVCache for reuse in subsequent iterations.



Data Parallelism Sequence Parallelism

Tensor Parallelism Pipeline Parallelism

Seq. 1

Seq. 2

Seq. 1

Seq. 2

Subseq. 1

Subseq. 2

Subseq. 1

Subseq. 2

Seq. 1

Model Block 1

Model Block 2

Seq. 1 Seq. 1 Seq. 1

Model
Block 1

Model
Block 2

Full Model

Full Model

Full Model

Full Model

Tensor
Sync.

Tensor
Sync.

Fig. 3. Different parallel inference methods for LLMs.

Existing studies [16], [17] indicate that longer prompts
often improve response quality and coherence, driving the
ongoing effort to build LLMs that can accept increasingly
longer inputs. However, long contexts pose a challenge to
response-generation latency during the prefill phase, since the
computational load for processing long contexts grows super-
linearly with context length due to self-attention mechanism.

2) Autoregressive Decoding Phase: As shown in Fig.
2(Right), the newly generated token from prefill phase is
then fed back into the decoding phase as input, creating an
autoregressive process for token generation. To generate a new
token that aligns with the context, LLMs must compute its
relationship with all previous tokens. The KVCache stores the
previously computed keys and values of these tokens, enabling
their direct reuse without recomputation in each iteration.
Decoding phase is repeated until a stop token is generated
or the maximum sequence length is reached.

For tasks requiring the generation of numerous tokens,
the decoding phase can dominate the inference process. The
challenge with the decoding phase is its autoregressive nature,
which makes it challenging to run in parallel and therefore
hard to accelerate with multiple edge devices.

C. Collaborative Edge Computing for Generative LLMs

1) Parallel Inference Methods for LLMs: To fully harness
the potential of collaborative edge devices for serving gen-
erative LLMs, the key question is the choice of parallelism
method. We illustrate different parallelism strategies in Fig. 3.
Specifically, 1 Data Parallelism (DP) partitions workloads
across the sample dimension, with each device maintaining
a full replica of the model and independently performing
inferences. However, for single-sequence requests, DP fails
to leverage multiple edge devices concurrently. 2 Sequence
Parallelism (SP) requires each device to maintain a full
model replica and partitions the input sequence into sub-
sequences for parallel operation, but it necessitates two all-
gather synchronizations per decoder layer to ensure consistent
inference results. 3 Tensor Parallelism (TP) partitions LLM
weights across devices, with each hosting a subset of parame-
ters. However, it requires two all-reduce synchronizations per
decoder, one after the MHA module and another after the FFN
module. 4 Pipeline Parallelism (PP) horizontally partitions
the LLM into consecutive stages along the layer dimension,

TABLE I
ANALYSIS ON COMPLEXITY OF VARIOUS PARALLELISM METHODS.

Features 1 DP 2 SP 3 TP 4 PP Jupiter
Model Memory

Usage (per device) O(P ) O(P ) O( P
N
) O( P

N
) O( P

N
)

Comp. Latency
(per sequence) O(C) O(C

N
) O(C

N
) O(C) O(C

N
)

Comm. Volume
(per sequence) None 2LSH 4LSH (N − 1)SH

TABLE II
COMM.-TO-COMP. RATIO OF VARIOUS PARALLELISM METHODS.

Model
Name

Network
Bandwidth

Communication-to-Computation Ratio
SP TP DT [9] Galaxy [8] Jupiter

Llama2-7B 100Mbps 8.16 6.96 3.48 5.19 0.08
1Gbps 0.92 0.88 0.45 0.69 0.01

Llama2-13B 100Mbps 5.71 6.06 3.03 4.63 0.05
1Gbps 0.73 0.81 0.38 0.56 0.01

with each stage mapped to a distinct edge device. Multiple
input sequences are injected into the pipeline concurrently to
increase parallelism. However, facilitating parallel inference
for a single sequence remains challenging.

We analyze and summarize the model memory usage,
computation latency, and total communication volume for
various parallelism methods in single sequence inference, as
detailed in Table I. P represents the total number of LLM
parameters, C denotes the total floating-point operations for
single sequence inference, L indicates the number of decoder
layers, S stands for the input sequence length, and H is the
size of the hidden state of LLM. We can observe that PP is
far more communication-efficient than SP and TP (L ≫ N )
because each device only needs to exchange a subset of output
activations with neighboring workers, eliminating the need for
multiple tensor synchronizations at each layer.

2) Issues of Existing Collaborative Edge Inference Systems:
Most existing collaborative edge inference systems [8], [9]
employ TP and SP as the primary principle for parallel LLMs
inference. However, employing TP and SP involves multiple
tensor synchronization in each decoder layer, resulting in
significant communication overhead. Specifically, Table II
summarizes the communication-to-computation latency ratios
observed during single-sequence prefilling using various par-
allelism methods on an edge platform with four Jetson Xavier
NX [18]. We observe that the ratio can reach up to 8.2 times
for TP and SP-based methods under typical edge network
bandwidth. Despite efforts by these systems to design sophis-
ticated communication optimization techniques, our evaluation
in §VI has revealed that communication time still remains a
bottleneck under low-bandwidth edge environments. Besides
the aforementioned methods, a few research efforts [10] have
explored the use of PP to orchestrate edge devices. However,
for single-sequence requests, these methods ultimately degrade
to serial inference, preventing the concurrent utilization of
multiple edge devices. Moreover, all of the aforementioned
works have focused solely on optimizing the prefill phase,
neglecting the autoregressive decoding phase, which is also a
critical part of the generative LLMs’ inference process.



LLMs
Llama

Edge Devices
Model
Info.

Profiler

Sequence Partition Algorithm

Mistral
GPT

LLM Partition Algorithm

Device
Info.

Stage 1 Stage 2 Stage 3 Stage 4

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

Intra-Sequence Pipeline ParallelismInput
Sequence

Sub-
Sequences
Sub-seq. 1

Sub-seq. 2

Sub-seq. 3

Verify
Stage

Verify
Stage

Prefill Output

Draft
Stage

Draft
Stage

...
Inference with Speculative Decoding 

Outline-Based Pipeline Parallelism

Prefill Phase

1. How to take tablets
2. Precautions 
3. Side effects

Outline

User's
Question

Point-
Extending
Requests
Request 1

Directive
Prompt

Inter-Request
Pipeline Parallelim

Concat Outputs

1
1

1

2
2

2

3
3

3Request 2

Request 3

Decoding Phase

Fig. 4. Jupiter system overview.

D. Design Goal and Technical Challenges

As summarized earlier, existing collaborative edge systems
for generative LLM inference exhibit limitations. Alterna-
tively, we revisit these limitations and endeavor to propose
a more fast, scalable and resource-efficient collaborative edge
AI system, guided by the following design goals: (1) Support
parallel acceleration of single-sequence inference during both
the prefill and autoregressive decoding phases. (2) Achieve
scalable memory footprint reduction per device by distributing
the LLM parameters across participating devices. (3) Minimize
tensor exchanges between devices to maintain high inference
performance even in extremely low-bandwidth edge environ-
ments. To achieve the above design goals, instead TP, we adopt
a pipelined architecture as a principle to orchestrate collabo-
rative edge devices. Each device holds a portion of the param-
eters, enabling the collective memory of multiple devices to
support the target LLM. Furthermore, pipelined architecture
is highly communication-efficient, as devices exchange only
a small set of intermediate activations with their neighbors.
Despite the opportunities, adopting pipelined architecture still
suffers from the following non-trivial challenges:
• How to accelerate the prefill phase with pipeline paral-

lelism? The prefill phase is computation-intensive and incurs
significant time-to-first-token latency, particularly for long
prompts. This motivates us to augment available computing
power with collaborative edge devices. However, traditional
pipelined inference degrades to serial inference for single-
sequence requests, necessitating the exploration of new
parallel opportunities for our pipelined architecture.

• How to accelerate the autoregressive decoding phase with
pipeline parallelism? Token-by-token autoregressive decod-
ing is notorious for its prolonged inference process and the
inherent difficulty in parallelization. Effectively leveraging
edge resources in a pipeline manner poses a significant
challenge to the decoding acceleration.

III. JUPITER SYSTEM OVERVIEW

Fig. 4 illustrates an overview of our proposed Jupiter
system, which incorporates dedicated designs to optimize
both the prefill and decoding phases. In the prefill phase,
Jupiter profiler first conducts an LLM prefill process using
calibration sequences with varying lengths on the edge devices

to record the run-time traces necessary for parallelism planning
algorithm ( 1 ). LLM partition algorithm takes the target LLM
and profiling results as inputs to generate an optimal pipelined
partition, considering both the resource heterogeneity and
memory budget of edge devices ( 2 ). The input sequence is
processed by the sequence partition algorithm, which divides
it into multiple sub-sequences. These sub-sequences are then
concurrently fed into the inference pipeline, enabling resource-
efficient intra-sequence parallel inference ( 3 ). Jupiter in-
corporates two modules designed to maximize the utilization
of computational resources by fully exploiting the parallelism
potential inherent in the decoding process. Specifically, we first
incorporate speculative decoding into our collaborative edge
inference system to enhance resource efficiency by processing
multiple candidate tokens in parallel ( 4 ). Next, to further
boost parallelism potential by leveraging multiple edge devices
concurrently during the decoding phase, we introduce an
outline-based pipeline parallel decoding method ( 5 ).

IV. PARALLEL ACCELERATION FOR PREFILL PHASE

A. Intra-Sequence Pipeline Parallelism for Generative LLMs

1) Pipelined Inference for LLMs: Jupiter adopt a
pipelined architecture [10] as a principle to orchestrate collab-
orative edge devices, which involves partitioning the decoder
layers of an LLM into multiple stages. Each stage contains a
stage model composed of a set of consecutive decoder layers
and is mapped to a separate edge device that performs the
forward pass (FP) for the corresponding stage model. Single-
sequence requests are prevalent in edge intelligence services;
in this setup, only one device is active at any given time, as
depicted in Fig. 5( 1 ). Ideally, we aim for all edge devices to
be active concurrently to fully exploit their resource potential.

2) Opportunities of Intra-Sequence Parallel Inference: To
fully boost the parallel potential of our pipelined architecture,
we propose to partition the input sequence into multiple sub-
sequences along the sequence dimension and inject them into
the pipeline concurrently to increase parallelism, as depicted in
Fig. 5( 2 ). Although the computation of the QKV Project and
FFN modules in decoder layers depends on each individual
sub-sequence, the self-attention operation in the MHA module
requires calculating dependencies and relationships between



Input Sequence

Stage 1

Stage 2

Stage 3

i FP for sub-sequence i

Forward communication

Input Sequence FP for entire sequence

1

Input Sequence

Input Sequence

2 3 4 5

1 2 3 4 5

1 2 3 4 5

Stage 1

Stage 2

Stage 3
Latency Reduction 1 2 3 4 5

Sequence
Partition

Fig. 5. An illustration of pipelined inference with three edge devices.

Sub-sequence
“edge”
“AI”

Cache
Hidden
State

Concat

Self-attention results

Attention with
Previous sub-seq.

Transformer Layer

...

Unidirectional Self-attention
...

Transformer Layer

...

Bidirectional Self-attention
...

(a) A comparison of two
mainstream self-attention. 

(b) The self-attention for sub-sequence     utilizes
the cached hidden state of previous sub-sequences.

A
tte

nt
io

n

Fig. 6. An illustration of opportunities of intra-sequence parallel inference.

tokens across the entire input sequence, making intra-sequence
pipeline parallelism a non-trivial task.

In this work, we leverage the key observation that the
causal decoder, the predominant architecture used in current
generative LLMs, employs a unidirectional attention mask
to ensure that each input token can only attend to previous
tokens. Consequently, for an input sequence (t1, t2, ...), the
computation of self-attention of a token ti involves only the
preceding tokens t1, ..., ti−1, as depicted in Fig. 6(a). This
property brings opportunities for pipeline parallelism within
a single input sequence. Specifically, we partition an input
sequence into M sub-sequence: (s1, s2, ...), where each sub-
sequence consists of a set of consecutive tokens. We then
inject all sub-sequences into the pipeline sequentially. During
inference, each stage caches the hidden states of every sub-
sequence. When computing for si, we utilize the cached
hidden states of s1, ..., si−1 to ensure correct self-attention
results for si, as depicted in Fig. 6(b).

B. Resource-Efficient Parallelism Planning

In this section, we detail the parallelism planning for
optimal partitioning of LLMs and input sequences.

1) Selecting Optimal LLMs Partition: To enable pipelined
inference, we need to partition the target LLM into multiple
stages and map them to edge devices. As with any pipeline, the
steady-state throughput is determined by the execution time of
the slowest stage. Consequently, we endeavor to partition the
LLM into balanced stages. We consider an LLM consisting
of L layers (embedding, decoder and output head, etc.) and
denote D as an ordered set of all devices involved in parallel
inference. Dn = {d1, ..., dn} denotes the subset of first n
device in D. A(i → j,Dn) denote the time taken by the
slowest stage in the optimally balanced sub-pipeline between
layer i to j with Dn. The goal of our algorithm is to estimate
A(1 → L,D). To solve this balanced partitioning problem,
we break the pipeline into sub-pipelines and leverage the

idea of dynamic programming. The formula of the dynamic
programming algorithm can be written as:

A(1 → y,Dn) = min
1⩽l<y

max

{
A(1 → l,Dn−1),
T (l + 1 → y, dn),

(1)

where T (i → j, n) =
∑j

l=i t
n
l represents the time taken by

device dn to process layers i through j. tnl is averaged from
profiling on physical edge devices using a calibration dataset.
If the memory required for the stage model spanning layers i
through j (including LLM parameters and KVCache) exceeds
the memory budget of device dn, then T (i → j, n) = +∞.

2) Selecting Optimal Sequence Partition: As previously
discussed, we can partition the input sequence into multi-
ple sub-sequences to boost parallelism. However, partitioning
the input sequence is not trivial for the following reasons:
(1) Increasing the number of sub-sequences can efficiently
boost parallelism and reduce pipeline bubbles. However, this
results in shorter sub-sequences, which may underutilize the
mobile accelerator (e.g., GPU, NPU), potentially leading to
longer processing times. (2) Partitioning the sequence into
sub-sequences of equal length for pipelining is not optimal.
As previously discussed, the self-attention of sub-sequence
si depends on previous s1, ..., si−1. Consequently, later sub-
sequences carry a heavier computational load than earlier ones.
(3) The input sequence lengths vary across different requests,
necessitating the determination of the optimal partitioning
strategy for each length to accommodate varying tasks.

To overcome above challenges, we design a sophisticated
sequence partition algorithm to achieve optimal pipeline effi-
ciency. We denote the maximum length of the input sequence
that the target LLM can process as Smax. To avoid under-
utilizing devices, we first profile the accelerator utilization on
each device at various input sequence lengths (< Smax). We
then decide the minimum sub-sequence length, denoted as b,
that prevents underutilization of all mobile accelerators.

After optimal LLM partitioning, we obtain a partitioned
LLM with multiple stage models, each mapped to an edge
device and having exact same computational latency. We use
hi to represent the inference latency of sub-sequence si at
each stage, as shown in Fig. 7(Left). As detailed earlier, in
our intra-sequence parallel inference, the inference latency of
each sub-sequence si depends on s1, ..., si−1 and itself. We use
q(x, y) to denote the inference latency for a sub-sequence of
length x, given the total length y of its previous sub-sequences.
Thus, hi can be expressed as hi = q(|si|,

∑i−1
j=1 |sj |). We

meticulously profile q(x, y) on a realistic edge platform under
various sequence lengths x and y. The profiling overhead can
be linearly reduced by conducting concurrent profiling on mul-
tiple devices and approximating results through interpolation.

The goal of our algorithm is to find optimal partition
schemes for sequences of varying lengths (< Smax), ensuring
that the inference latency of each sub-sequence is as balanced
as possible while each sub-sequence length exceeds b to avoid
device underutilization. We leverage dynamic programming
to achieve the goal. We denote W (i →, j, k) as the inference
latency of the slowest sub-sequence in the optimal partitioning



Optimal
Sequence
Partition

Latency
Reduction

Equal-length partitioning

Jupiter's partitioning

Draft Stage

Verify Stage

Draft Stage

Verify Stage

Candidate
tokens

Candidate
tokens

Verified
tokens

Verified
tokens

Prefill Phase Speculative Decoding

Decoding output tokens

Fig. 7. Left: Comparison between equal-length and Jupiter’s partition.
Right: An illustration of the decoding phase with Speculative Decoding.

KV
Cache

Stage 1
KV

Cache

Stage 2
KV

Cache

Stage 3
Next

Token

Draft Candidate Tokens Verify Candiate Tokens

Fig. 8. A workflow of our collaborative inference with speculative decoding.

of the sequence from token i to j into k sub-sequences. The
formula of the dynamic programming can be written as:

W (1 → y, k) = min
1⩽l<y

max

{
W (1 → l, k − 1),
T ∗(y − l, l).

(2)

T ∗ (y − l, l) =

{
+∞, if y − l < b,
q(y − l, l), else. (3)

When solving for Eq. 2, the sentence length y is iterated from 1
to Smax, and k is iterated from 1 to 4|D|. We set the maximum
number of sub-sequences to 4|D|, which effectively boosts
the pipeline parallelism while preventing excessive planning
algorithm runtime. For each sentence length, we record the
optimal balanced partitioning strategy for dividing the sentence
into a varying number of sub-sequences.

Upon the completion of dynamic programming process, we
need to select the optimal number of sub-sequences k for each
input length y. We observe from Fig. 7(Left) that the total
inference latency for a sequence of length y partitioned into
k sub-sequences can be estimated by:

Latency =

k∑
i=1

hi + (|D| − 1)×W (1 → y, k). (4)

We choose k to minimize Eq. 4 for each sequence length y.
3) Complexity: The time complexity for our optimal LLM

partition is O(L2|D|), while for the optimal sequence partition
it is O(S2

max|D|). In our experiments, the entire planning
process is completed in under five minutes on an edge device.
Notably, parallelism planning is a one-shot offline process and
its outputs can be stored and reused. The overhead of it can
be amortized across thousands of inference iterations.

V. COLLABORATIVE INFERENCE FOR DECODING PHASE

The decoding latency of LLMs has become a substantial
obstacle to high-quality human-computer interactions. This
latency stems from the token-by-token generation required by
autoregressive decoding, causing significant delays in produc-
ing long outputs. To accelerate LLM decoding, an intuitive
way involves leveraging idle computational resources to en-
hance parallelism. Jupiter introduces two parallel decoding
strategies to accelerate the decoding phase.

Here's the package insert. How
should I take this medication?

To take this tablets, follow the instructions
from your healthcare provider ...

1.

Avoid taking this tablets with alcohol or
other NSAIDs to minimize the risk ...

2.

Common side effects of this tablets may
include gastrointestinal symptoms ...

3.

LLM Answers

Token-by-token
sequential answering

Outline-based
parallel answering

1 2 3 4

1 2 3 4

1 2 3 4

Pipeline Parallel Decoding

4. This tablets are contraindicated in
patients with a history of ...

Outline Generation Directive
Please provide a list of brief points to
outline the answer to the following
question. Each point should be ...

1. How to take tablets
2. Precautions 
3. Side effects
4. Contraindications

...

OutlineLLMs
Llama

Mistral

GPT
Prefill
Phase

Request 1

Point-Extending Requests
Request 2

Extending
Point iRequest 3 Request 4

Fig. 9. An illustration of our outline-based pipeline parallel decoding.

A. Collaborative Inference with Speculative Decoding

Speculative decoding [19]–[23] has emerged as a promising
paradigm for accelerating decoding. In each decoding step,
speculative decoding first drafts multiple candidate tokens ef-
ficiently, speculating on future decoding steps. This is achieved
using extra lightweight heads atop current LLM backbone
(Self-Drafting) or a small independent draft model (Indepen-
dent Drafting). These candidate tokens are then verified in
parallel by original LLM to ensure the outputs align with
the original distribution, as illustrated in Fig. 7(Right). By
leveraging parallel token generation, speculative decoding sig-
nificantly reduces the total number of decoding steps required.
Jupiter incorporates the idea of Self-Drafting from spec-

ulative decoding into our collaborative edge inference system
to enhance resource efficiency during decoding phase. Fig. 8
illustrated our workflow. Specifically, the next token produced
during the prefill phase is fed into the LLM for a forward
pass to obtain logits ( 1 ). The logits will be processed by the
FFN heads incorporated atop the LLM to generate multiple
candidate tokens in parallel ( 2 ). The candidate tokens will
be transferred from the final stage back to the initial stage
and fed into the LLM for a forward pass. The intermediate
results of all candidate tokens will be precisely stored in the
KVCache ( 3 ). The posterior probability of each speculative
candidate will be evaluated to determine whether it should be
accepted or rejected ( 4 ). Subsequently, the final stage will
inform all stages of the rejected candidate tokens, directing
them to remove these tokens from the KVCache ( 5 ). We
extract the logits of the accepted tokens from the output
produced in step 3 . These logits are processed by the draft
heads to generate a new batch of candidate tokens for the next
decoding iteration ( 6 ). Our workflow design and implemen-
tation minimize redundant LLM calls, ensuring that each draft
and verification process requires only one LLM inference.
Jupiter supports the flexible plug-and-play replacement of
various self-drafting speculative decoding algorithms. In our
evaluation, we incorporate the token tree-based speculative
decoding algorithm proposed by Medusa [23].

B. Outline-Based Pipeline Parallel Decoding

Incorporating speculative decoding with collaborative infer-
ence enables parallel processing of multiple candidate tokens,



thus attaining improved device utilization. However, merely
applying speculative decoding on pipelined inference yet oper-
ates serially, failing to leverage multiple devices concurrently.

To fully exploit idle computational resources at the edge,
we intend to further explore the parallel potential during the
decoding phase. Towards that, we borrow wisdom from human
thinking, which usually organizes thoughts against questions
first and then responds point-by-point. This routine, in many
situations, is more common and efficient than purely sequential
answering and has been experimentally verified by many
recent explorations [24]–[26]. These works typically guide
LLMs in generating an explicit chain or tree-like thought
process, subsequently eliciting high-quality answers.

Inspired by them, we introduce an outline-based pipeline
parallel decoding method, with its workflow illustrated in Fig.
9. Specifically, we first concatenate a crafted outline generation
directives with the user’s question for prefilling ( 1 ) to guide
the LLM in organizing its thoughts and generating an outline
of the answers ( 2 ). The prefill for static guide prompts can be
performed offline in advance and cached into the KVCache.
Next, we package each point from the outline into separate
point-extending requests. Each request guides the LLM to
expand solely on that specific point ( 3 ). These requests are
then injected into the collaborative inference pipeline concur-
rently for efficient pipeline parallelism ( 4 ). The KVCache
of input sequence generated during the prefill phase will
be shared across all requests, thereby eliminating redundant
computations. Finally, after all point-extending requests are
finished, we will concatenate the outputs from each request to
obtain the final answer ( 5 ).

Note that different tasks (e.g., document summarization,
and question answering) can utilize distinct outline genera-
tion directives in generating outlines appropriate for parallel
inference. For tasks requiring step-by-step reasoning with
chained logical dependencies, such as math and coding, or
tasks needing only short answers, the outline-based parallel
decoding method may not generate high-quality responses.
Therefore, our system design includes outline-based parallel
decoding as a flexible, pluggable module. For problem types
less suited to it, the system can automatically decide or let the
user choose whether to use it, thus avoiding unsatisfactory
results. In these cases, our inference system automatically
defaults to speculative decoding for sequential answering, and
experimental evaluations demonstrate that Jupiter can still
achieve outstanding performance in latency reduction.

VI. IMPLEMENTATION AND EVALUATION

A. Experimental Setups

1) Models and Datasets: We evaluate Jupiter using 2
LLMs from the Llama2 series [14], specifically Llama2-7B
and Llama2-13B (both with INT4 quantization). We employ 3
recent assistant-style datasets: LiMA [27], Vicuna-80 [28], and
WizardLM [29]. LiMA is used to evaluate inference latency,
and all datasets are utilized for assessing generation quality.

TABLE III
SPECIFICATIONS OF EDGE DEVICES IN EXPERIMENTS.

Edge Device GPU Processor Memory Power
Jetson Xavier NX [18] 384-core NVIDIA Volta 8GB 20W

Jetson TX2 [30] 256-core NVIDIA Pascal 8GB 20W
Jetson Nano [31] 128-core NVIDIA Maxwell 8GB 10W

2) Edge Environment Setup: We use three heterogeneous
off-the-shelf edge devices, as listed in Table III, in our exper-
iments. We evaluate Jupiter’s performance in two realis-
tic edge environments, incorporating both homogeneous and
heterogeneous configurations. Homogeneous Environment A
consists of 4×NX, while Heterogeneous Environment B com-
prises 1×NX, 2×TX2, and 1×Nano. We adjust the device-
to-device communication bandwidth to simulate the diverse
network conditions within realistic edge environments.

3) Baseline Methods: We compare Jupiter with five
state-of-the-art parallel LLMs inference method:
• Sequence Parallelism (SP) [17] is pioneering work that

proposes SP for distributed LLM execution in datacenters.
• Megatron-LM (M-LM) [11] is pioneering work that proposes

TP for distributed LLM execution in datacenters.
• DeTransformer (DT) [9] is a TP-based collaborative edge

inference system that strikes a trade-off between commu-
nication overhead and inference accuracy by reducing the
frequency of tensor synchronization. In our evaluation, we
selected the decoupled layers to be half of the total layers.

• Galaxy [8] is a collaborative edge inference system that
employs TP across MHA and FFN modules, with SP applied
to the connecting operations. It employs fine-grained over-
lapping of comm. and comp. to mitigate inference latency.

• EdgeShard [10] is a collaborative edge inference system that
employs pipelined architecture to orchestrate edge devices.

Given that existing inference systems do not optimize the
decoding phase, we equipped them with the naive token-
by-token sequence generation method. During the decoding
phase, SP will degrade to single-device inference due to the
sequence length being one.

B. End-to-End Performance

Table IV summarizes the end-to-end generation latency of
Jupiter and baselines. We sample prompts from LiMA
dataset with an average sequence length of 260 tokens and
set the maximum generation length to 64 tokens. The results
indicate that Jupiter consistently outperforms all baselines
across various models, edge environments, and edge network
bandwidths. Specifically, when compared to TP-based parallel
inference methods like M-LM, DT and Galaxy, Jupiter
achieves up to 26.1× latency reduction. When compared
to SP-based parallel inference method like SP. Jupiter
achieve up to 3.3× latency reduction. SP degrades to single-
device inference during the decoding phase, avoiding signif-
icant communication overhead but wasting resources on idle
devices. Additionally, SP requires each device to accommodate
all parameters, causing out-of-memory (OOM) issues with
a 13B model. When compared to pipelined methods like
EdgeShard, Jupiter achieves up to a 2.7× reduction in



TABLE IV
END-TO-END GENERATION LATENCY (IN SECONDS) FOR LIMA DATASET INCLUDING THE PREFILL AND DECODING PHASES UNDER VARIOUS SETTINGS.

Edge
Environment

Network
Bandwidth

Llama2-7B Llama2-13B
SP M-LM DT Galaxy EdgeShard Jupiter SP M-LM DT Galaxy EdgeShard Jupiter

Homo.
Env. A

100Mbps 53.5 431.2 228.5 427.6 42.2 16.5 OOM 503.4 270.1 496.5 66.2 26.3
500Mbps 37.4 106.9 66.4 103.9 39.0 15.2 OOM 130.1 83.4 125.0 63.4 25.2

1Gbps 35.4 66.4 46.1 65.0 38.6 14.9 OOM 83.4 60.1 81.3 63.1 24.9

Hetero.
Env. B

100Mbps 63.1 491.2 288.6 458.3 59.3 22.4 OOM 624.5 391.2 566.4 102.4 38.8
500Mbps 47.0 167.0 126.4 142.9 56.1 21.4 OOM 251.2 204.5 208.0 99.7 37.3

1Gbps 44.8 126.4 106.2 104.9 55.7 20.9 OOM 204.5 181.2 165.7 98.3 36.8

0

50

100

Pr
ef

illi
ng

La
te

nc
y 

(m
s)

Llama2-7B@100Mbps

0

10

20

30
Llama2-7B@1000Mbps

0

50

100

150

200

X

Llama2-13B@100Mbps

0

20

40

X

Llama2-13B@1000Mbps

0

2000

4000

6000

De
co

di
ng

La
te

nc
y 

(m
s)

Llama2-7B@100Mbps

0
200
400
600
800

Llama2-7B@1000Mbps

0

2000

4000

6000

X

Llama2-13B@100Mbps

0

250

500

750

1000

X

Llama2-13B@1000Mbps

Seq. Parallelism  Megatron-LM DeTransformer Galaxy EdgeShard Jupiter

Fig. 10. Evaluate in Homogeneous Environment A. The average per-token
processing/generation latency in prefill/decoding phase. × indicates OOM.

latency by fully leveraging the computational resources of
multiple devices concurrently. Jupiter’s resource-efficient
parallelism planning accounts for the computational resources
of heterogeneous devices, consistently outperforming base-
lines in heterogeneous environment B and achieving a 2.6×
to 21.9× latency reduction.

C. Phase-Wise Analysis

We further investigate the performance improvements in
the prefill and decoding phases separately. In Fig. 10 and
11 we report the average per-token processing latency during
the prefill phase and generation latency during the decoding
phase in homogeneous and heterogeneous environments, re-
spectively. For the prefill phase, Jupiter achieves a 1.4× to
7.4× reduction in latency compared to the baselines. Despite
efforts by state-of-the-art edge inference systems like DT and
Galaxy to design sophisticated communication optimization
techniques, such as fine-grained communication-computation
overlapping, these methods still perform poorly in bandwidth-
constrained edge networks. For the decoding phase, Jupiter
significantly outperforms the baselines, achieving a 2.9× to
33.2× reduction in latency. In TP and SP-based parallel
architectures, the high communication-to-computation ratio
is further exacerbated during token-by-token autoregressive
generation, while pipelined architectures fail to concurrently
utilize the computational resources of multiple devices. These
issues collectively amplify the severe resource wastage prob-
lem during decoding phase. In contrast, Jupiter’s system
design fully boosts parallelism potential during autoregressive
generation, significantly accelerating the decoding phase.

0

50

100

150

Pr
ef

illi
ng

La
te

nc
y 

(m
s)

Llama2-7B@100Mbps

0

20

40

60

80
Llama2-7B@1000Mbps

0

100

200

300

X

Llama2-13B@100Mbps

0

50

100

150

X

Llama2-13B@1000Mbps

0

2000

4000

6000

De
co

di
ng

La
te

nc
y 

(m
s)

Llama2-7B@100Mbps

0

500

1000

1500

Llama2-7B@1000Mbps

0

2000

4000

6000

8000

X

Llama2-13B@100Mbps

0

1000

2000

X

Llama2-13B@1000Mbps

Seq. Parallelism  Megatron-LM DeTransformer Galaxy EdgeShard Jupiter

Fig. 11. Evaluate in Heterogeneous Environment B. The average per-token
processing/generation latency in prefill/decoding phase. × indicates OOM.

D. Scalability

We analyze the scalability of Jupiter on a 4-node homoge-
neous Jetson Xavier NX cluster. We use the same set of input
prompts as in §VI-B, with a maximum generation length of
64 tokens. The results are summarized in Fig. 12. We observe
that Jupiter exhibits substantial scalability even under a
bandwidth-limited (100Mbps) edge environment. When com-
pared to existing state-of-the-art collaborative edge inference
frameworks, Jupiter can achieve up to 23.7× latency reduc-
tion. The high communication-to-computation ratio of these
frameworks makes it challenging to scale resource-efficiently
in bandwidth-constrained edge environments. The scalability
analysis indicates that our Jupiter framework enables the
addition of more edge devices to aggregate computational
resources, allowing for parallel acceleration of inference and
leveraging collective memory to support larger LLMs.

E. Decoding Speedup and Generation Quality Assessment

1) Decoding Speedup Analysis: We investigate the per-
formance boost of each decoding optimization module on
homogeneous edge environment A. In our evaluation, we in-
corporate the token tree-based speculative decoding algorithm
proposed by Medusa [23], which utilizes five draft heads
with top-1 prediction. We conduct an ablation study to assess
the contributions of speculative decoding and outline-based
pipeline parallelism, as depicted in Table V. We observe that
both modules achieve effective decoding acceleration, with an
overall speedup ratio of up to 3.9×.

2) Generation Quality Assessment: Previous works [21]–
[23] have shown that speculative decoding achieves nearly
lossless generation results compared to naive token-by-token
sequence generation, as its verification process will correct



1 2 3 4
0

100

200

300

400
La

te
nc

y 
(s

)
Llama2-7B@100Mbps

DeTransformer
Galaxy

1 2 3 4
0

200

400

XXXX

Llama2-13B@100Mbps
EdgeShard
Jupiter

1 2 3 4
Number of Jetson Xavier NX

0

20

40

60

La
te

nc
y 

(s
)

Llama2-7B@1000Mbps

1 2 3 4
Number of Jetson Xavier NX

0

25

50

75

100

XXXX

Llama2-13B@1000Mbps

Fig. 12. End-to-end inference latency with a varing number of Jetson Xavier
NX under 100Mbps and 1Gbps network bandwidths. × indicates OOM.

the output distribution. In this section, we separately assess
the generation quality of our outline-based pipeline paral-
lel decoding method. We select the widely adopted LLM-
based evaluation framework FastChat [32] to compare the
answer quality of naive token-by-token sequence generation
(naive generation) and our outline-based parallel generation.
FastChat, empowered by GPT-4o, will assign a quality score
between 1 and 10 for each answer. As summarized in Table VI,
we compared the generation quality of naive generation and
our method on the Vicuna-80, WizardLM, and LiMA datasets.
We observe that our outline-based pipeline parallel decoding
significantly reduces latency while maintaining comparable
generation quality to that of naive generation. However, across
all three datasets, the overall generation quality of our outline-
based parallel decoding method is slightly lower than that of
naive generation. Therefore, we conducted further experiments
on the Vicuna-80 dataset to analyze the reasons for the lower
quality. We manually selected five question categories from the
Vicuna-80 dataset: Generic, Knowledge, Counterfactual, Cod-
ing, and Math, and evaluated them using FastChat, as shown
in Table VII. Our results show that for Generic, Knowledge,
Counterfactual questions, our outline-based method achieved
comparable or superior generation quality. However, for tasks
requiring step-by-step reasoning with chained logical depen-
dencies, such as Coding and Math, our outline-based parallel
decoding exhibited lower generation quality. Therefore, our
system design incorporates outline-based parallel decoding as
a flexible, pluggable module. For problem types less suited to
it, the system can automatically decide or let the user choose
whether to use it, thus avoiding unsatisfactory answers.

VII. RELATED WORK

A. Collaborative Edge Computing for DNN Inference

CoEdge and DeepThings [33], [34] enable the distributed
execution of CNN-based inference applications on resource-
constrained edge clusters. Galaxy and DeTransformer [8],
[9], [35] utilize TP to accelerate transformer inference with
collaborative edge devices. EdgeShard [10] orchestrates edge
devices in a pipelined manner for sequential inference.

TABLE V
SPEEDUP OVER NAIVE SEQUENTIAL GENERATION. SD: SPECULATIVE

DECODING. OP: OUTLINE-BASED PARALLEL DECODING.

Model
Speedup Over Naive

Naive Jupiter w/o OP Jupiter w/o SD Jupiter
Llama2-7B 1.0× 1.8× 2.3× 3.6×
Llama2-13B 1.0× 2.0× 2.4× 3.9×

TABLE VI
OVERALL ANSWERS QUALITY OF NAIVE AND JUPITER’S METHOD.

Llama2-7B Llama2-13B Llama2-7B Llama2-13B Llama2-7B Llama2-13B
Naive 7.05 7.19 6.26 6.85 6.72 6.77
Jupiter 6.59 6.85 6.21 6.70 6.20 6.25

WizardLM LiMAMethod Vicuna-80

TABLE VII
ANSWERS QUALITY ON VARIOUS QUESTION CATEGORIES IN VICUNA-80.

Generic Knowledge Counterfactual Coding Math
Naive 6.17 7.17 6.75 7.07 4.33
Jupiter 7.33 7.17 6.75 4.07 3.16
Naive 7.25 7.33 7.25 7.07 4.83
Jupiter 7.58 7.67 7.75 4.29 2.33

Llama2
-7B

Llama2
-13B

Method Quality  on different question categoriesModel

B. Parallel LLMs Execution Architectures

DP [36], [37] is the most extensively used distributed exe-
cution method in datacenter. Gpipe [12] and subsequent works
[38], [39] leverage PP to address the memory challenges
associated with executing LLMs that contain billions of pa-
rameters. Megatron [11] initially introduced TP as a principle
to parallelize the execution of the transformer-based LLMs.
To overcome the limitations of handling long sequences, [17],
[40], [41] borrow the concept of intra-sequence parallelism
from recurrent neural networks, splitting long sequences across
multiple devices for concurrent execution.

C. Speculative Decoding for LLMs Inference Acceleration

Blockwise decoding [20] is a pioneering work proposing the
Draft-then-Verify paradigm. [21], [22], [42] further unleashes
its potential and utilizes independent lightweight LLMs to
perform the drafting task both accurately and efficiently.
While leveraging an external drafter model offers considerable
advantages, obtaining an appropriate draft model remains chal-
lenging. To address that, numerous studies suggest leveraging
the target LLM itself for efficient self-drafting [23], [43], [44].

VIII. CONCLUSION

This paper introduces Jupiter, a fast and scalable col-
laborative edge inference framework for generative LLMs.
Jupiter employs a communication-efficient and resource-
scalable pipelined architecture, combined with sophisticated
system design, to parallelize and accelerate the prefill and
decoding phases. Our extensive evaluation demonstrates that
Jupiter achieves up to 26.1× end-to-end generation latency
reduction compared to state-of-the-art methods.



REFERENCES

[1] OpenAI, “Chatgpt: Openai language model (gpt-4),” https://www.openai.
com/chatgpt, 2024, accessed: 2024-07-22.

[2] E. King, H. Yu, S. Lee, and C. Julien, “Sasha: creative goal-oriented
reasoning in smart homes with large language models,” Proceedings of
the ACM on IMWUT, vol. 8, no. 1, pp. 1–38, 2024.

[3] Y. Li, H. Wen, W. Wang, X. Li, Y. Yuan, G. Liu, J. Liu, W. Xu,
X. Wang, Y. Sun et al., “Personal llm agents: Insights and survey about
the capability, efficiency and security,” arXiv preprint arXiv:2401.05459,
2024.

[4] S. Ye, L. Zeng, Q. Wu, K. Luo, Q. Fang, and X. Chen, “Eco-fl: Adaptive
federated learning with efficient edge collaborative pipeline training,” in
Proceedings of the 51st International Conference on Parallel Processing,
2022, pp. 1–11.

[5] S. Ye, L. Zeng, X. Chu, G. Xing, and X. Chen, “Asteroid: Resource-
efficient hybrid pipeline parallelism for collaborative dnn training on
heterogeneous edge devices,” in Proceedings of the 30th Annual Inter-
national Conference on Mobile Computing and Networking, 2024, pp.
312–326.

[6] L. Zeng, S. Ye, X. Chen, and Y. Yang, “Implementation of big ai models
for wireless networks with collaborative edge computing,” IEEE Wireless
Communications, vol. 31, no. 3, pp. 50–58, 2024.

[7] L. Zeng, S. Ye, X. Chen, X. Zhang, J. Ren, J. Tang, Y. Yang, and
S. Xuemin (Sherman), “Edge graph intelligence: Reciprocally empow-
ering edge networks with graph intelligence,” IEEE Communications
Surveys & Tutorials, vol. 27, 2025.

[8] S. Ye, J. Du, L. Zeng, W. Ou, X. Chu, Y. Lu, and X. Chen, “Galaxy:
A resource-efficient collaborative edge ai system for in-situ transformer
inference,” in IEEE INFOCOM 2024-IEEE Conference on Computer
Communications. IEEE, 2024.

[9] Y. Wei, S. Ye, J. Jiang, X. Chen, D. Huang, J. Du, and Y. Lu,
“Communication-efficient model parallelism for distributed in-situ trans-
former inference,” in 2024 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2024, pp. 1–6.

[10] M. Zhang, J. Cao, X. Shen, and Z. Cui, “Edgeshard: Efficient
llm inference via collaborative edge computing,” arXiv preprint
arXiv:2405.14371, 2024.

[11] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro
et al., “Efficient large-scale language model training on gpu clusters
using megatron-lm,” in SC, 2021, pp. 1–15.

[12] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” NeurIPS, vol. 32, 2019.

[13] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” NeurIPS, vol. 33, pp. 1877–1901, 2020.

[14] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[15] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[16] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-
document transformer,” arXiv preprint arXiv:2004.05150, 2020.

[17] S. Li, F. Xue, C. Baranwal, Y. Li, and Y. You, “Sequence parallelism:
Long sequence training from system perspective,” in The 61st Annual
Meeting Of The Association For Computational Linguistics, 2023.

[18] “Jetson-nx,” https://developer.nvidia.com/blog/
jetson-xavier-nx-the-worlds-smallest-ai-supercomputer, 2019.

[19] H. Xia, Z. Yang, Q. Dong, P. Wang, Y. Li, T. Ge, T. Liu, W. Li,
and Z. Sui, “Unlocking efficiency in large language model infer-
ence: A comprehensive survey of speculative decoding,” arXiv preprint
arXiv:2401.07851, 2024.

[20] M. Stern, N. Shazeer, and J. Uszkoreit, “Blockwise parallel decoding
for deep autoregressive models,” NeurIPS, vol. 31, 2018.

[21] Y. Leviathan, M. Kalman, and Y. Matias, “Fast inference from transform-
ers via speculative decoding,” in International Conference on Machine
Learning. PMLR, 2023, pp. 19 274–19 286.

[22] C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper,
“Accelerating large language model decoding with speculative sam-
pling,” arXiv preprint arXiv:2302.01318, 2023.

[23] T. Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and T. Dao,
“Medusa: Simple llm inference acceleration framework with multiple
decoding heads,” arXiv preprint arXiv:2401.10774, 2024.

[24] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” NeurIPS, vol. 35, pp. 24 824–24 837, 2022.

[25] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large
language models,” NeurIPS, vol. 36, 2024.

[26] J. Long, “Large language model guided tree-of-thought,” arXiv preprint
arXiv:2305.08291, 2023.

[27] C. Zhou, P. Liu, P. Xu, S. Iyer, J. Sun, Y. Mao, X. Ma, A. Efrat, P. Yu,
L. Yu et al., “Lima: Less is more for alignment,” NeurIPS, vol. 36, 2024.

[28] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng,
S. Zhuang, Y. Zhuang, J. E. Gonzalez et al., “Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality,” See https://vicuna.
lmsys. org (accessed 14 April 2023), vol. 2, no. 3, p. 6, 2023.

[29] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and
D. Jiang, “Wizardlm: Empowering large language models to follow
complex instructions,” arXiv preprint arXiv:2304.12244, 2023.

[30] “Jetson-tx2,” https://developer.nvidia.com/embedded/jetson-tx2, 2017.
[31] “Jetson-nano,” https://developer.nvidia.com/embedded/

jetson-nano-developer-kit, 2019.
[32] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,

Z. Li, D. Li, E. Xing et al., “Judging llm-as-a-judge with mt-bench
and chatbot arena,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[33] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge: Cooperative
dnn inference with adaptive workload partitioning over heterogeneous
edge devices,” IEEE/ACM Transactions on Networking, vol. 29, no. 2,
pp. 595–608, 2020.

[34] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[35] J. Du, Y. Wei, S. Ye, J. Jiang, X. Chen, D. Huang, and Y. Lu,
“Co-designing transformer architectures for distributed inference with
low communication,” IEEE Transactions on Parallel and Distributed
Systems, 2024.

[36] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication effi-
cient distributed machine learning with the parameter server,” NeurIPS,
vol. 27, 2014.

[37] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2020, pp. 1–16.

[38] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
symposium on operating systems principles, 2019, pp. 1–15.

[39] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia et al., “Dapple: A pipelined data parallel approach for
training large models,” in PPoPP, 2021, pp. 431–445.

[40] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Sto-
ica, “Terapipe: Token-level pipeline parallelism for training large-scale
language models,” in International Conference on Machine Learning.
PMLR, 2021, pp. 6543–6552.

[41] R. Ma, X. Yang, J. Wang, Q. Qi, H. Sun, J. Wang, Z. Zhuang, and
J. Liao, “Hpipe: Large language model pipeline parallelism for long
context on heterogeneous cost-effective devices,” in Proceedings of the
2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 6:
Industry Track), 2024, pp. 1–9.

[42] H. Xia, T. Ge, P. Wang, S.-Q. Chen, F. Wei, and Z. Sui, “Speculative
decoding: Exploiting speculative execution for accelerating seq2seq gen-
eration,” in Findings of the Association for Computational Linguistics:
EMNLP 2023, 2023, pp. 3909–3925.

[43] X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, Z. Zhang, R. Y. Y.
Wong, A. Zhu, L. Yang, X. Shi et al., “Specinfer: Accelerating large
language model serving with tree-based speculative inference and veri-
fication,” in ASPLOS, Volume 3, 2024, pp. 932–949.

[44] A. Santilli, S. Severino, E. Postolache, V. Maiorca, M. Mancusi,
R. Marin, and E. Rodolà, “Accelerating transformer inference for trans-
lation via parallel decoding,” arXiv preprint arXiv:2305.10427, 2023.

https://www.openai.com/chatgpt
https://www.openai.com/chatgpt
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

	Introduction
	MOTIVATION AND PRELIMINARIES
	Decoder-Based Generative LLMs Architecture
	Generative LLMs Inference and KV Caching
	Prefill Phase
	Autoregressive Decoding Phase

	Collaborative Edge Computing for Generative LLMs
	Parallel Inference Methods for LLMs
	Issues of Existing Collaborative Edge Inference Systems

	Design Goal and Technical Challenges

	Jupiter System Overview
	Parallel Acceleration for Prefill Phase
	Intra-Sequence Pipeline Parallelism for Generative LLMs
	Pipelined Inference for LLMs
	Opportunities of Intra-Sequence Parallel Inference

	Resource-Efficient Parallelism Planning
	Selecting Optimal LLMs Partition
	Selecting Optimal Sequence Partition
	Complexity


	Collaborative Inference for Decoding Phase
	Collaborative Inference with Speculative Decoding
	Outline-Based Pipeline Parallel Decoding

	Implementation and Evaluation
	Experimental Setups
	Models and Datasets
	Edge Environment Setup
	Baseline Methods

	End-to-End Performance
	Phase-Wise Analysis
	Scalability
	Decoding Speedup and Generation Quality Assessment
	Decoding Speedup Analysis
	Generation Quality Assessment


	Related Work
	Collaborative Edge Computing for DNN Inference
	Parallel LLMs Execution Architectures
	Speculative Decoding for LLMs Inference Acceleration

	Conclusion
	References

