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Abstract—Mobile Edge Computing (MEC) revolutionizes real-
time applications by extending cloud capabilities to network
edges, enabling efficient computation offloading from mobile
devices. In recent years, the location privacy concern within
MEC offloading has been recognized, prompting the proposal
of various methodologies to mitigate this concern. However,
this paper demonstrates that the prevailing privacy protection
methods exhibit vulnerabilities. First, we analyze the shortcom-
ings of current methodologies through both system modeling
and evaluation metrics. Then, we introduce a Learning-based
Trajectory Reconstruction Attack (LTRA) to expose the weak-
nesses, achieving up to 91.2% reconstruction accuracy against the
state-of-the-art protection method. Further, based on w-event dif-
ferential privacy, we propose an ¢{-trajectory differentially private
mechanism, i.e., OffloadingBD. Compared to the existing works,
OffloadingBD provides more flexible and enhanced protection
with sound privacy theoretical guarantee. Lastly, we conduct
extensive experiments to evaluate LTRA and OffloadingBD. The
experiment results show that LTRA has good generalization
ability and OffloadingBD showcases a superior balance between
privacy and utility compared with baselines.

Index Terms—Edge computing, privacy-preserving computa-
tion offloading.

I. INTRODUCTION

OBILE Edge Computing (MEC) has become a promis-
ing paradigm for enabling real-time and low-latency
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Fig. 1. Schematic diagram of location privacy risks in edge offloading. The
quality of wireless channel conditions leads to different optimal offloading
decisions for mobile users. The wireless channel condition is closely related
to distance and other geo-information. Therefore, an edge server with prior
environmental knowledge may compromise the users’ location privacy.

applications, e.g., Virtual Reality (VR), Telemedicine, and
Internet of Vehicles (IoV), in mobile networks [1], [2].
It extends cloud computing capabilities to the edge of the
network, enabling data processing and analyzing to be per-
formed close to mobile devices. Based on MEC, computation
offloading is widely studied [3], [4]. It is a process of delegat-
ing computation-intensive tasks from mobile devices to nearby
edge servers to optimize their performance, battery life, energy
efficiency, etc.

Furthermore, privacy protection is one of the critical topics
in today’s digital era. For the first time, He et al. revealed
that the offloading decisions of a user may expose the loca-
tion information. The privacy threats are described in Fig 1.
They designed an online algorithm to perturb the offloading
decisions [5]. Subsequently, a cascade of works, e.g., [6],
[71, [8], [9], built upon this seminal work, with several
studies focusing on devising more sophisticated models and
optimization algorithms to strike optimal balances between
privacy protection and other performance measures such as
energy efficiency, latency, and throughput. These collective
efforts have significantly advanced the field in terms of both
theoretical modeling and practical algorithmic development.
However, we reveal the vulnerabilities of prevailing privacy
protection methods

To begin with, we revisit the privacy-preserving methods
in MEC offloading. We analyze why existing methods are
vulnerable to attacks and why this vulnerability has not been
identified. First, we summarize and generalize the modeling
of existing works. We find that the constraints in the existing
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works neglect correlation among points on the offloading
trajectory, which leads the proposed event-level perturbation
scheme, e.g., injecting random noises into the offloading ratio
at every single point without considering higher-level formal
privacy guarantees, provides limited protection for users’ loca-
tion privacy. Second, our empirical findings notably contradict
earlier assertions made in works like [5] and [10], where
it was hypothesized that consistent task size patterns during
offloading could render the system vulnerable to inference
attacks. Based on the hypothesis, they use the difference
between the number of offloaded tasks and generated tasks
as the metric to evaluate the effectiveness of their framework
on inference attacks. We reveal that this metric is invalid for
measuring the defense capability of inference attacks.

Further, we devise a learning-based inference attack. Our
intuition is that a mobile user moves within the coverage of the
edge server and forms an offloading trajectory. For the trajec-
tory, multiple single-point perturbations may have little impact
on the overall trajectory or a set of successive time slots. To
validate the weakness of event-level perturbation methods, we
propose a Learning-based Trajectory Reconstruction Attack
(LTRA). We build Seq2Seq models to transfer the offloading
pattern into the predicted channel state pattern. We evaluate
LTRA by targeting a state-of-the-art (SOTA) single-server
privacy-preserving offloading approach, i.e., OffloadingGuard
[11]. The evaluation results show that the learning-based
approach can achieve a maximum reconstruction accuracy of
91.2%, which means the event-level perturbation methods do
not preserve location privacy very well.

What is more, we refine privacy-preserving offloading
with an {-trajectory differential privacy mechanism. We pro-
pose OffloadingBD, a budget distribution mechanism inspired
by w-event differential privacy. The mechanism ensures e-
differential privacy for the offloading ratio trajectory within
any {-length window, suitable for MEC-enabled computation
offloading in infinite streams. Evaluation results affirm that
OffloadingBD outperforms event-level and user-level mecha-
nisms in striking a balance between privacy and utility. It is
worth noting that even some event-level-based existing works
define a form of a total budget over the whole trajectory, but
the privacy guarantee they provided is still the event-level [10],
[11]. Then, we verify that the proposed OffloadingBD is able
to provide a better privacy-utility balance in terms of average
system cost and reconstruction accuracy experiment.

The contributions of this paper are summarized as follows:

e We expose vulnerability in prevailing event-level pertur-
bation techniques for safeguarding user location privacy
in MEC-enabled offloading systems. We revisit privacy-
preserving methods in MEC offloading, highlighting
vulnerabilities due to overlooked correlations among tra-
jectory points and pointing out that existing event-level
perturbation schemes lack robust privacy guarantees. Our
empirical findings challenge assertions that consistent
task size patterns render systems vulnerable to inference
attacks. Metrics like task discrepancy fail to accurately
assess defense against such attacks.

e We propose a learning-based trajectory reconstruction
attack (LTRA). LTRA is build upon Seq2Seq models and
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is able to map the offloaded tasks trajectory to a nor-
malized movement (bandwidth) pattern. The experimental
outcomes reveal that our learning-based attack attains a
peak reconstruction accuracy of 91.2% against SOTA on
location privacy-preserving MEC offloading.
o We further refine privacy-aware offloading by intro-
ducing an {-trajectory differential privacy mechanism,
i.e. OffloadingBD. Unlike the existing event-level pri-
vacy guarantees, OffloadingBD provides a {-trajectory
e-differential privacy, ie, {-trajectory privacy. It out-
performs event-level privacy mechanisms by offering
stronger privacy preservation while inflicting lesser dam-
age to data utility compared to user-level mechanisms.
Notably, its independence from specific data patterns
enables the application of infinite trajectories, making it a
more adaptable and suitable choice for diverse scenarios.
The rest of the paper is organized as follows. We begin by
delving into the background of the study in Sec. II. Then,
we revisit privacy-preserving MEC offloading in Sec. III.
Following that, we articulate the attack methods in Sec. IV.
Subsequently, we introduce our proposed enhanced defense
mechanisms in Sec. V. Afterward, we proceed to the evalu-
ation section in Sec. VI. Finally, we conclude our paper and
discuss the future work in Sec. VIII.

II. BACKGROUND
A. Cloud and Edge Offloading

The evolution of distributed computing has witnessed a
profound shift from the centralized paradigm of cloud com-
puting to a more decentralized model, prominently featuring
edge computing. Initially, cloud computing revolutionized the
landscape by offering a remotely accessible, seemingly infinite
pool of computational resources and storage capacities [15].
Applications could offload their heavy processing loads and
data storage needs to distant cloud servers, relieving end-user
devices of these burdens and enabling scalability unseen before
[16]. However, as technology advanced and the demand for
real-time processing escalated, the limitations of cloud-centric
architectures became evident, particularly concerning latency
and bandwidth constraints. This gave rise to the advent of
edge computing, which extends the cloud’s capabilities to the
periphery of the network, closer to where data is generated
and consumed [17].

Edge offloading, a cornerstone of this new paradigm, rede-
fines how computational tasks are managed. By delegating
processing responsibilities to edge devices or nearby servers,
it significantly reduces latency, enhancing responsiveness and
user experience [18]. This approach capitalizes on the spatial
distribution of edge resources to minimize network hops
and data transmission delays, making it particularly suited
for latency-sensitive applications like autonomous vehicles,
augmented reality, and industrial IoT [19].

B. Privacy-Preserving Edge Offloading

Several studies [20], [21], [22] have acknowledged that
user privacy can be compromised when offloading data during
the computation process. Then, He et al. further pointed out
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TABLE I
SUMMARY OF EXISTING WORK

Paper Privacy guarantee Threat model Task generation  Network Setup Algorithm

[12] Event-level (e, 6)-DP  Honest-but-curious Uniform Simulation RL

[10] Event-level (e, §)-DP  Honest-but-curious Uniform Simulation Genetic algorithm
[11] Event-level e-DP Honest-but-curious Uniform Simulation RL

[6] - Honest-but-curious Uniform WiFi RL

[8] - - Normal Simulation RL

[7] - - Fixed Simulation RL

[51, [13], [14], [8] - - Uniform Simulation RL

Ours {-trajectory privacy Refined honest-but-curious ~ Uniform WiFi/5G/Simulation ~ OffloadingBD

that user location can be inferred through his task offloading
strategy and proposed a Q-learning base method to jointly
optimize privacy and other metrics [5]. Following that, related
works were springing up and most of them used RL-(RL)-
based schemes [6], [7], [8], [10], [11], [14]. For instance, Lan
et al. considered computing offloading in a satellite scenario
and proposed a Proximal Policy Optimization (PPO) algorithm
to optimize the offloading policy [14]. Nguyen et al. modeled
a blockchain system and a temporal difference (TD) approach
is employed to allow the agent to learn offloading policies
without requiring the state transition probability.

None of the above works have any privacy guarantees. Then,
Pang et al proposed OffloadGuard and gave a e-differential
privacy guarantee [11]. However, even though Offloading-
Guard has a formal total privacy constraint on the entire
trajectory, its total privacy budget is obtained through parallel
composition instead of sequential composition. Hence, there
is only one event-level guarantee. The guarantee is weak
for a trajectory [23]. More recently, Wang et al. considered
the relaxed differential privacy guarantee in the scenario of
multiple servers [10]. Then, followed by [10], [12] and [24]
provide a similar argument. However, these guarantees are
event-level yet.

We summarize the existing work in TABLE 1.

C. Differential Privacy

Differential privacy is a concept in the field of privacy-
preserving data analysis and data mining. It provides a rigorous
mathematical framework for quantifying and ensuring the
privacy of individuals whose data is used for statistical analysis
while allowing useful information to be extracted from the
data. The following is the formal definition of event-level
(user-level) e-differential privacy of streaming data.

Definition 1 [23]: (event-level (user-level) e-differential
privacy of streaming data) Let A be a mechanism that takes
as input a stream prefix of arbitrary size. Let O be the set of
all possible outputs of A. Then, A\ is event-level (user-level)
e-differentially private if for all sets O C O, all event-level
(resp. user-level) adjacent stream prefixes S(t), S'(t), and all
t, it holds that

Pr[A(S (1) € O] < ¢° - Pr[A(S (7)) € O]. (1

In other words, e-differential privacy ensures that the pres-
ence or absence of any individual in the dataset has a limited
impact on the output of the algorithm, thus providing strong

privacy guarantees for individuals (events or users) in the
dataset. And, the parameter € is the so-called privacy budget.

The Laplace mechanism is one of the fundamental tech-
niques used to achieve differential privacy. It is employed to
add controlled noise to the output of a function, such as a query
or statistical analysis, in order to preserve privacy. Suppose we
have a function f that takes a dataset as input and produces
a real-valued output. To make f differentially private, we can
add Laplace noise to its output. The amount of noise added
depends on the sensitivity of f to changes in the input dataset
and the desired privacy level €. Given a dataset D, the Laplace
noise 77 is drawn from a Laplace distribution with scale A?f,
and the output of the differentially private function f(D) is
calculated as:

o) = 1)+ Lap (L), @
Laplace mechanism satisfies e-differential privacy. It is worth
noting that a modified Laplace mechanism was developed in
[11] to force the output of the mechanism within [0, 1] but
still holds e-differential privacy. We denote the mechanism as
MLap.

D. Threat Model

Existing literature implicitly assumes that the edge comput-
ing service provider and the base station operator are separate
entities. We emphasize that this assumption should be explicit,
otherwise, the base station manager/operator could directly
obtain user location/distance information through channel con-
ditions or other easily accessible means, rendering the problem
meaningless. The main privacy threat we consider is that the
server can access the amount of the offloaded task at each time
slot and then extract the location privacy from the offloading
trajectory. Meanwhile, we assume that the attacker (server)
can not access the total amount of the task at each time slot.

Further, both single-server models and multi-server models
can be found in existing works. If multiple servers are owned
by the same entity, implying interactive information between
them is allowed, it is equivalent to having multiple anchors
for localization. In such cases, multi-server models are more
prone to violating user location privacy compared to single-
server models. The simulation results in [10] also support this
hypothesis. If multiple servers are owned by different entities,
there are much more spaces for the user to devise the privacy
enhancement strategy. In this paper, our primary focus is on
the single-server model.
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III. REVISITING PRIVACY PROTECTION IN MEC
OFFLOADING

In this section, we delve into the reasons behind the
susceptibility of existing methodologies. First, we embark on
modeling and meticulously scrutinize the constraints within its
optimization framework, revealing inherent limitations. Fur-
thermore, our examination of real-world systems has unveiled
a fundamental flaw: the metric employed to gauge resilience
against interference attacks in existing approaches is inherently
flawed, fostering a deceptive sense of protection efficacy.

A. Modeling

In this section, we summarize and generalize the modeling
forms in existing work, and analyze their limitations.

The specific modeling in different existing works is varied.
Some consider the equal-length discrete local tasks modeling
and the decisions are the count of tasks to offload, e.g., [5],
[10], and some build a continuous task model and the decisions
are offloading ratios, e.g., [11]. Nevertheless, the core principle
behind these models is consistent. Discrete modeling can be
seen as a special case of continuous modeling. Consider that
there is an edge server and a mobile user. Both the server and
the user are equipped with computing resources. To minimize
cost, a mobile user can offload part of their task to the MEC
servers via wireless channel for computation and complete
the remaining tasks locally. The user’s offloading strategy
typically involves determining the appropriate balance between
offloading tasks to the MEC server and completing them
locally. The key factor in this decision is the offloading ratio
of the size of generated tasks. Further, adding noise to the
offloading ratio is allowed. We summarize the cost and privacy
modeling as follows.

At each time slot 7, a computation task with the size of s;
(in bits) is generated at the mobile device of a user. A user can
access a MEC server, and the offloading ratio of the total task
of the user on the edge servers «; € [0, 1]. The task executed
on the user’s local device and edge server is s{ = s;a; and
sﬁ = s:(1 — a,), respectively. Further, the offloading ratios
are allowed to be perturbed to preserve privacy. A metric
called Pattern Chaos (PC) [5], [6], [11] quantifying the
difference between the user’s optimal offloading ratio «; and
the perturbed offloading ratio @,. Mathematically, PC can be
defined as:

PC, = |a} —@,|. 3)

The objective of these works is to enable efficient task
offloading to the MEC servers while ensuring user privacy
and minimal computation costs. In the offloading process,
which spans T time periods, the goal is to minimize total
computation cost for each user’s tasks, while ensuring that a
pre-defined total privacy protection level of each user meets
their privacy requirement I, e.g.,

T
min C = Z C, “4)
! =1
s.t.  a; €[0,1], (4a)
T
> PCi=T, (4b)
t=1
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where C is the total cost function and C; is the cost function
in time slot ¢. Generally, the cost functions take into account
performance factors such as latency, energy consumption
costs, etc. Further, one assumption is that the optimal solution
of (4), a*(#) « d,4, where dy; is the geographical distance
from the server to the user.

Most existing works model the movement of the user as
a Markov Decision Process (MDP) and solve (4) by RL-
based methods. In particular, the SOTA work in a single
server setting, i.e., OffloadingGuard [11], provides e-event-
level differential privacy by adding a modified Laplacian noise
to increase PC;.

Constraint (4b) merely specifies the total amount of noise
added along the trajectory but does not impose any restrictions
on how the noise is distributed throughout the trajectory, which
can be seen in Fig. 3 and Fig 4. We point out that this is
limiting, potentially leading to a situation where the addition of
noise fails to achieve the desired privacy protection. Specificly,
this kind of scheme has two significant drawbacks:

e The schemes are trajectory-oblivious. They only consider
how to minimize the cost of the system given an upper
privacy loss limit, but do not take into account the
distribution of the added noises over the time slots. At
some slots, the agent adds very large noise, but at some
other slots, the agent may do nothing.

e Except [10], [11], [12], other works do not provide any
provable theoretical privacy guarantees. Also, [10], [11],
[12] derive differential privacy guarantees for every single
point, but they apply parallel composition instead of
sequential composition [25]. In other words, they are
event-level differential privacy guarantees. For trajectory
data with location privacy concerns, event-level guaran-
tees can be weak [23].

These two drawbacks lead us to get the intuition that a mobile
user moves within the coverage of the edge server and forms
an offloading trajectory. For the trajectory, multiple single-
point position perturbations may have little impact on the
overall trajectory or a set of successive time slots.

B. Emprical Study

In this subsection, we build a practical system and show
that the metric used in the existing works to measure the
invulnerability of inference attacks is not appropriate.

First of all, we introduce our experiment configuration. We
use Dell t5820 as our edge server, which is equipped with
Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz, NVIDIA 3090Ti
GPU and 32GB RAM. We use Jetson Xavier NX as our mobile
device. We have set up two types of networks. For 5G, we
collect data around a standard commercial 5G base station
with coordinates (1%#% ¥##%%4 3% *¥%%%])(Anonymized). For
WiFi, we use a Netgear R9000 for signal transmission and
reception. The task we deploy is edge-device collaborative
convolutional neural network inference. In each time slot, a
batch of data inference requests is generated during movement.
Users have the option to split their batch data into two sub-
batches, performing one locally and sending the other to the
edge server for execution. Specifically, we deploy MobileNet
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Fig. 2. Relationship between optimal offloading ratio and bandwidth. The
active zone (marked in gray) encapsulates the fluctuating bandwidth values
experienced by the mobile device throughout its movement.

V2, ResNet50, ResNetl01 for ImageNet, VGG16, AlexNet,
and ResNetl8 for CIFAR-10. The cost we considered is the
total execution delay.

Moreover, we noticed that in some existing works, i.g., [5],
[10], evaluate their methods against inference attacks. Our
question is why their experimental results demonstrate excel-
lent defense against inference attacks yet remain vulnerable
to our attack. It is said that if the offloaded tasks or the
number of offloaded tasks and generated tasks consistently
approximate a specific value in a fixed period, it indicates that
the offloading process is susceptible to inference attacks and
uses this conclusion to build privacy leakage metrics, which
is called task discrepancy. The quantitative description of the
metrics TD:

T
D=y | - N 5)

=1

where N,O 1 and NG refers to the number of offloaded tasks
and generated tasks at time slot ¢. In our experiment, it is
observed that all intersection points between the active zone
and the optimal offloading curve share identical values (1.0), as
exemplified by the curve corresponding to CIFAR10 in Figure
2(a). This implies that every location in the user’s trajectory
during this period experiences excellent network speed, and
the low communication overhead makes it cost-effective to
offload all tasks at any position along this trajectory. In
such scenarios, users can achieve optimal offloading with-
out sacrificing any privacy. The experimental results above
demonstrate the unreliability of the metrics. In numerous
cases, the entire offloading decision is almost exclusively in a
none-or-all situation. On the other hand, this metric does not
take the relationship between consecutive time slots. Under
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Fig. 4. Privacy-aware offloading scheduling in [5].

such circumstances, using the TD as an indicator for privacy
leakage is also not applicable, which can be seen in Figs. 3
and 4. We highly recommend using more reasonable metrics
for evaluating vulnerability. The metric should: 1) Account
for the sequential nature of offloading decisions and their
correlation over time. This can be achieved by analyzing the
offioading trajectory over sliding windows of time slots. 2)
Directly quantify the amount of location information that can
be inferred from the offloading trajectory. This can be achieved
by using attack success rates as a proxy for privacy leakage.

IV. ATTACKING METHOD

In this section, to reveal the vulnerability of the scheme,
we give a motivating example that we can reconstruct the
channel state trajectory even by direct observation. Further,
we propose a learning-based trajectory reconstruction attack
(LTRA), which is able to map the offloaded tasks trajectory
to a normalized movement (bandwidth) pattern.

A. A Motivating Example

The goal of this subsection is to raise a motivating example
to show the vulnerability of the event-level perturbation-based
scheme. For simplicity and without loss of generality, we
reproduce the results of the first paper of this series work, i.e.,
[5] wherein they model the task of a user’s local device s, as
discrete equal-sized packages. The number of generated tasks
is uniformly random in [1,5] at each time slot. The decision
made by the user at each time slot is the number of offloading
tasks out of the maximum total number of 5. The reproduced
results are shown in Fig. 3 and 4. The channel state equal to
1 means the channel state performance is good and equal to
0 is the opposite. While we use [5] as a motivating example
to illustrate the problems and introduce our attack, we also
discuss other works in Sec. VI.
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Specifically, Fig. 3 (Fig. 2 of [5]) is the optimal privacy-
oblivious offloading scheduling. It can be seen that the channel
state can be easily inferred by comparing the number of
offioaded tasks in different time slots because the offloading
decision is highly related to the channel state. Recall that the
channel state contains information about the distance between
the user and the edge server. Thus, user location privacy poses
a risk of leakage. Based on the above observation, they take
an event-level perturbation method into account and design a
Q-learning-based algorithm to pursue a better utility-privacy
trade-off. Also, we reproduce the improved results by the
proposed algorithm in Fig. 4 (Fig. 4 of [5], but the orange line
is additional). We can see that the pattern of the number of
offloaded tasks (red dotted line) is more chaotic than privacy-
oblivious scheduling.

However, we find that it is insecure yet. Even though a
lot of points have been perturbed, one can observe the whole
offloading trajectory and induce the binary channel state.
We can recover the channel state trajectory by a two-step
method: 1) Thresholding. Let the time stamp whose number
of offloaded tasks is greater than 1 map to the good channel
state, and that is less than or equal to 1 map to the bad channel
state. 2) Smoothing. When a certain state only lasts for less
than or equal to 2 time slots, set the corresponding time slot
to another state.

The recovered channel state trajectory is shown in Fig. 3
(orange line). It turns out that the shape of the orange line is
almost the same as the light green line. Further, following the
settings in [5], we repeat the test 100 times, and our average
reconstruction error, measured by the number of timestamps
of the correct output over the total number of timestamps, is
only 3.1%. It means that this event-level protection does not
achieve the desired privacy protection.

B. Learning-Based Trajectory Reconstruction Attack

The motivating example reveals the vulnerability of the
event-level perturbation-based scheme preliminarily, but may
not be sufficient to support the conclusion. The model and
parameters in [5] are special and the threshold and length of
the smoothing window in the reconstruction method above
are to be set manually. Hence, we will promote a more gen-
eral learning-based trajectory reconstruction attack (LTRA).
The MEC server can first simulate users’ movement in its
coverage to generate distance and offloaded task sequence
pair as training data. Then it can train a Seq2Seq model to
build the mapping from received offloaded tasks to wireless
communication bandwidth pattern. Finally, the server would
use the well-trained model to launch a reconstruction attack.

Technically, we collect M pairs of T-length input and output
sequences {x;,b;}, i € [M]. Here, x; € [0, s,]" is the sequence
of offloaded task sizes and b; € R” is the sequence of the
distances between the base station (WiFi AP) and the mobile
device. Our aim is not to meticulously reconstruct precise
distances based on offloading patterns; rather, our focus lies in
normalized bandwidth pattern. Thus, we perform the following
normalization operation on b;:

Xij

Yie[N], jelTl, (6)

Xij = ,
max X;
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Then, our aim is to train a parameterized Seq2Seq model
n(-;0), which can be used to map the offloading pattern
to discrete distance information. Here, 6 represents trainable
parameters.

It is crucial to emphasize that the normalization process in
our learning-based methodology holds significant importance.
Given the substantial variations in server and mobile device
capabilities, coupled with the disparate communication laten-
cies across different systems, establishing a precise correlation
between offloading volume and bandwidth without exhaus-
tive scenario-specific training data is unfeasible. Nevertheless,
through normalization, our model acquires the capability to
discern the inherent, relative connection between distance and
bandwidth within the confines of a consistent motion path.
This enhancement enables a more nuanced understanding of
the dynamics at play, transcending the need for exhaustive,
individualized data collection for every potential scenario.

One consideration is whether the normalized and discretized
reconstructed pattern is indeed a threat for location privacy.
However, upon closer examination, even if such a pattern
cannot accurately reflect the location, it contains the sketch of
the user’s movement trajectory. If the attacker has sufficient
prior knowledge of the environment, they can obtain a lot of
information. Reference [3] also supports this viewpoint.

Then, we introduce the data collection, model, and loss
function of our approach in the following:

1) Training Data: Our training data is generated through
simulation and consists of a total of 15000 one-dimensional
sequences with a length of 500. The input data is the number
of offloaded tasks and output data and the output data is
the bandwidth between the server and the user’s devices.
To enhance the generalizability of our model, we employ
a systematic approach where, for each individual sequence,
system parameters are derived through uniform random sam-
pling across a predefined spectrum of values. Moreover, in
the interest of maintaining impartiality, we presuppose that
the server lacks knowledge regarding the precise perturbation
technique employed by the user. In the process of generating
our training data, we consistently apply the Laplace mecha-
nism at every time slot. The privacy parameter € is sampled
uniformly randomly from a range of [1, 10].

2) Model: The Seq2Seq paradigm assumes various forms
depending on the specific task, and we consider two distinct
approaches for its implementation. First, we embrace the
classical model rooted in the encoder-decoder architecture.
Specifically, the encoder takes the input sequence and pro-
cesses it into a fixed-size context vector, which contains the
encoded representation of the input sequence. This context
vector captures information about the input sequence. The
decoder takes the context vector produced by the encoder and
generates the output sequence one step at a time. At each
step, it predicts the next slot in the output sequence based
on the current input offloaded task quantity and the context
vector. The decoder iteratively generates the output sequence
until the predefined length (same as the input length in our
case) is reached. We also tried more modern structures in the
evaluation, which is shown in the next Sec. VI.
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3) Loss Function: For the LSTM-based encoder-decoder
structured model, we use a customized loss function. Taking
inspiration from [26], we have developed a bespoke loss func-
tion to calculate the Mean Absolute Error (MAE) based on the
Euclidean distance between the predicted output and the actual
ground truth trajectories used in the training process. However,
for offloading trajectories that have been significantly disturbed
by excessive noise (identified by invalid distance values), we
resort to utilizing the standard Mean Squared Error (MSE)
loss function. This adaptation is necessary as our custom
loss function relies on valid location information to function
effectively.

We have extensively evaluated the proposed attacking
approach above to demonstrate its outstanding performance
in attacking location privacy in the following.

V. IMPROVED PRIVACY-PRESERVING MECHANISM DESIGN

We have shown the vulnerability of the event-level pertur-
bation in offloading trajectory data release in the previous
section. This section will investigate possible improved per-
turbation approaches.

A. Design Rationale

Recall the reason behind the vulnerability of the event-
level perturbation methods is that they neglect the correlation
of ratios between successive slots. The constraint 4(b) only
limits the lower bound on the total amount of noise added.
Even though utilizing appropriate noise-adding mechanisms
can achieve event-level differential privacy, they can not ensure
a higher level of protection.

A straightforward method is to change the noise-adding
mechanism into user-level differential privacy, i.e., allocate the
total budget to each slot or set the sensitivity as Af = O(1/T)
and perform noise-adding as the event-level mechanism, where
T is the total length of the trajectory. However, user-level
perturbation still has problems. First, it introduces too much
noise and hurts offloading utility. Given a certain privacy
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B. (-Trajectory Privacy and OffloadingBD

Inspired by w-event differential privacy [23], [27], [28], we
give the formal definition of ¢-trajectory neighboring stream
prefixes and {-trajectory e-differential privacy.

Definition 2 ({-Trajectory Neighboring Stream Prefixes):
Let Ay = {ay,...,a} and A} = {a,...,a;} be two offloading
ratio trajectory stream prefixes ending with the current time
slot t. A, and A} are C-trajectory stream prefixes neighboring
each other if one is obtained from another by modifying all
ratios in any one {-trajectory. We say that A, and A, are (-
trajectory neighboring.

Definition 3 ({-Trajectory e-Differential Privacy): Let A be
an algorithm that takes prefixes of offloading ratio trajectory
streams A, = {ay,...,q,} as inputs. Let A ={a,....a) be a
possible perturbed output stream of A. If for any {-trajectory
neighboring A; and A;, the following holds,

Pr{A(A,) = A] < € - Pr[A(A]) = A,]. (8)

then we say that A satisfies (-trajectory e-differential privacy
(simply, {-trajectory privacy).

Roughly speaking, {-trajectory private mechanisms guaran-
tee all ratios in any {-length offloading ratio trajectory of the
infinite offloading ratio stream. One straightforward way is to
use a {-length sliding window to control the budget consumed
within each window to be less than the total budget e.

Theorem 1: Let A be a mechanism that takes as input an
offloading ratio trajectory stream prefix A;, and outputs a noise
trajectory A, = (@, ...,@,). Suppose that we can decompose
A into t mechanisms Ai,...,A, such that Aj(q;)
each N; generates independent randomness, and achieves €;-
differential privacy. Then, A satisfies (-trajectory privacy if

Vi e [1], '
Z € < €. &)

k=i—€+1

= a,

Algorithm 1 OffioadingBD
coa(i— 1), (e, ..

Require: o;, (a1, . ., €-1), L

budget, the noise scale of each offloading ratio is O(T)Ensure: @;

times that of event-level mechanisms. Second, it can not be
performed in an online manner. The total time slots (7)) have to
be predefined before online offloading, which is impractical.
In many cases, a user cannot determine how long they will
be moving within the coverage of an MEC in the first place.
Therefore, we need a more reasonable and flexible privacy-
preserving mechanism. A wiser and ideal approach would be
to modify the second constraint of (4) as follows:

> PC,2T, Vielt,....Tl. (7)
t=i—{+1

(7) means that within any {-length window on the T-length
sequence, it is guaranteed that a certain level of noise is
injected. Hence, we aim to develop an improved privacy-
preserving noise-adding mechanism satisfying (7) meanwhile
it can 1) provide a formal privacy guarantee and 2) per-
form online. Then, we will introduce ¢-trajectory privacy and
OffloadingBD.

// Sub mechanism A;;
Calculate @, « argmin C,

Identify last non-null release @(u) from (ay,...,a( — 1))
dis — |a; — @(w)| and A;; « =

// Sub mechanism A;, .

Calculate remaining budget €., < 5 — Z;;i“ €2

Set /li,2 — %
if dis > A;, then
10 return: @; < a; + MLap(4;2)
11 else
12 return: a; < a(u) and remark i as a null release
13 end if

1
2
3
4
5 Set dis < dis + MLap(4;)
6
7
8
9

The proof of Theorem 1 is straightforward and we omit
it here and it can also refer to [23]. Then, the key problem
is how to allocate the total budget € in an active sliding
window to satisfy (9) while maintaining utility. We propose a
budget distribution scheme, i.e. OffloadingBD. The procedure
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of OffloadingBD at current time slot i is shown in Algorithm
1. It begins with a total budget € and operates as follows: 1)
It sets aside a fixed budget for each time slot to calculate the
absolute value of the current optimal offloading ratio and the
last null-all ratio, which is demoted as dis. 2) The total budget
is distributed in an exponentially decreasing manner to time
slots where a release is scheduled to take place. 3) The budget
used in time slots outside the active window is recycled (For
technical reasons, for k <0 we set €,1 = 55 and g = 0).

OffloadingBD proceeds with an optimistic assumption,
anticipating only a limited number of releases in each window.
As a result, it eagerly allocates a substantial portion of the
available budget for each release. Then, it can be proved that
OffloadingBD satisfies {-trajectory privacy.

Theorem 2: OffloadingBD satisfies {-trajectory privacy.

Proof: [Proof] First, we prove that A;; satisfies € -
differential privacy, where €| = ﬁ A, privately outputs dis.
Considering the offloading ratio is in [0, 1]. Thus, the sensitiv-
ity Agis = 1. A adds Laplace noise with scale 4;; = % By
sequential composition [25], A; is € 1-differentially private, as
€1 = 2—5{, Then, A;, privately publishes «; or 1. In the former
case, the sensitivity is also 1 in our setting, and A;, adds
Laplace noise with scale ——=2——. Hence, by Theorem 1,

(E/Z*Zi:fr fk,z)
Ain is € p-differentially private, where €, = § - Zﬁ;i“ €2/2.
In the latter case, €;, is trivially equal to zero, as no publication
occurs. Finally, according to Theorem 1, if we prove that for
every ¢ and i € [t], it holds that Zi:k:i—€+l & < e. We can
prove this by induction.m

Further, we analyze the utility of OffloadingBD. The key
factor of the error depends on the number of null releases. We
give the following Theorem.

Theorem 3: The average error per time slot of OffloadingBD
is O (4% + 2—5) if m releases occur in a window.

Proof: [Proof] To prove the theorem, we first consider that
if A;, outputs the private ratio and A;; just calculate the
dis without adding noise. The noise scale is 4,2 = 2/€y,.
Recall that the total remaining budget is allocated in an
exponentially decreasing fashion and the error induced by
each publication is shared among ¢/m time slots. Hence, the
average error per time slot in the window is bounded by
0(% ﬁé—i——ké# = % . Then, we know that
to protect dis, half of the given budget is spent on A;;. Hence,
the average total error is O (4= + 2) m

In summary, we introduce an enhanced noise-injection
mechanism for MEC offloading, aiming to rectify the limi-
tations of current approaches. Demonstrating superior privacy
guarantees, we establish that our method effectively bounds
errors resulting from the noise-injection process. Notably, our
approach operates online and is applicable to infinite-length
sequences, making it highly compatible with MEC offloading
scenarios.

VI. EVALUATION

In this section, we evaluate the effectiveness of the proposed
LTRA and OffloadingBD. We run our experiments on a server
with 1 NVIDIA Tesla A100 40G MIG 1g.5gb (the smallest
MIG compute instance), and 2 * Intel(R) Xeon(R) Gold
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parameters.

6240 CPU @ 2.60GHz (A total of 36 cores/72 threads). We
implement the method with Pytorch 1.8.1 using Python 3.8.10.
Our implementation relies on NumPy [29] in version 1.19.2.
The model uses the Adam optimizer [30] with a learning rate
of 0.001. We choose a batch size of 128 and trained our model
for 500 epochs.

A. Evaluation of LTRA

Our attack aim is OffloadingGuard [11] and it can also
be migrated to any event-level perturbation MEC-enabled
computation offloading method. The user movement in [11] is
assumed Markov. In our training data, the probability of each
user’s movement is uniformly and randomly sampled from
[0.05,0.8] for each item.

First of all, to visually demonstrate the effectiveness of
our attack, we plot an example of the original trajectory and
reconstructed trajectory, which is shown in Fig. 5. This is the
reconstruction results given the event-level privacy budget is
10. From Fig. 5(a), it can be seen that the reconstructed trajec-
tory has a trend similar to the original trajectory. Furthermore,
although the reconstructed trajectory does not closely follow
the original trajectory in the time slot range [0, 200], if we
check the binarized trajectory, i.e., setting the values above the
median to 1 and the values below the median to 0, as shown in
Fig. 5(b), we can clearly see that the reconstructed trajectory
highly matches the original trajectory.

Next, we explore the comparison between the candidate
models and the adopted model, as well as the impact of
discreteness level and privacy budget on attack accuracy. We
employ the LSTM-based encoder-decoder structure as our
Seq2Seq model to “translate” the volume of the offloaded
task trajectory to the bandwidth trajectory. We also tried more
modern models: 1) Transformer-based. We replace the LSTMs

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 25,2025 at 12:35:29 UTC from IEEE Xplore. Restrictions apply.



4404

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

x104 x10%
6 go.g 6 goe
g So.s g So.s8
o —— £ —Trajectory g o —— [ —Trajectory b
g4 —— User-Level 507 g4 —— User-Level 50.7
o —— Event-Level o s ~——— Event-Level 9]
g <06 vl ot Ll g <06 R
< 2 fal —— I-Trejectory < 2 fal —— [-Trejectory
© ©
c 0.5 ~——— User-level <05 ~—— User-level
o — Event-level ] — Event-level
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Privacy Budget Privacy Budget Privacy Budget Privacy Budget
(a) System cost; £ = 10. (b) Attacking accuracy; £ = 10. (c) System cost; £ = 20. (d) Attacking accuracy; ¢ = 20.
Fig. 7. Comparison between OffloadingBD and user-level, event-level perturbation.
. . data, and the results are shown in Fig. 8. We chose the LSTM-
0.8 @A Simulation R ;

: Wi based model in LTRA. It can be seen that our model achieves
§0.6 o5 56 nontrivial reconstruction accuracy on real systems. It can also
5 7 reach 83% reconstruction accuracy in binary cases under our
é(")’ 0.4 WiFi configuration. The model exhibits generalization, mainly

0.2 due to the normalization of bandwidth in our training data,
making it easier for the model to learn the relative trends
0.0 3 within the sequence.
# Levels
B. Evaluation of OffloadingBD
Fig. 8. Comparison of LTRA performance on test datasets obtained in

different environments.

with Transformers. Specifically, we use multi-head attention
with 4 heads, and 4 layers of Transformers for both encoder
and decoder. 2) iTransformer. iTransformer [31] is the SOTA
work in the field of complex time series forecasting and we
directly use the API developed by [32]. 3) LLM prompt. We
also venture into the realm of prompt engineering with Large
Language Models (LLMs), harnessing their capabilities in a
novel one-shot training manner. Concretely, we describe the
Seq2Seq requirements in natural language as prompts to GPT
3.5 and accompany these prompts with the training data. Then,
we entrust the LLM to perform inference. The experiment
results are shown in Fig. 6.

In Fig. 6(a), we fix the privacy budget as 10 and vary
different discretization levels. We find that the LSTM-based
model achieves excellent performance when the levels are 2
or 3. As previously explained, the reconstruction results with
a discretization level of 2 or 3 already contain a considerable
amount of location information. In Fig. 6(b), we vary the total
amount of noise added to the test data, i.e. privacy budget €. It
can be observed that with a slight increase in privacy budget,
i.e. a slightly lower amount of noise injection, our attack can
achieve quite high accuracy (>80%)

We notice that the traditional LSTM-based model exhibits
superior performance. We speculate that the probable reason
behind this lies in the nature of our data: unlike natural
language or other types of natural sequential data, which often
exhibit very long-term intra-sequence semantic correlations or
recurring patterns, our data is only relevant within a relatively
small range of slots. Consequently, using smaller-scale models
that capture a narrower field of view tends to yield better
results.

In addition, we use the data collected in the real system as
a test set to evaluate the model we trained on the simulated

In this subsection, we evaluate OffloadingBD. We will show
that OffloadingBD provides better trade-offs between utility
and privacy compared to event-level perturbation and user-
level perturbation. First, we take the system cost, i.e., (4), as
the metric and vary the total privacy budget, which is shown
in Fig. 7 (a)(c). It can be seen that as the privacy budget
increases, the cost of the user-level method is consistently high
because too much noise is added, which means the user-level
perturbation is useless. And the system cost corresponding to
event-level and {-trajectory decreases rapidly with the increase
of the privacy budget. However, the event-level method is
much more vulnerable than the other two methods. Specifi-
cally, we also plotted the variation of binary reconstruction
accuracy with the privacy budget in Fig. 7 (b)(d). It shows
that as the privacy budget slightly increases, the reconstruction
accuracy on the event-level method reaches 90+%. Instead,
OffloadingBD (¢-trajectory-based) only achieves a reconstruc-
tion accuracy of around 70% for our attack with a privacy
budget of 100 (note that binary accuracy is 50% for random
guesses). Last but not least, in Fig. 7, the overall comparison
of the cost and reconstruction accuracy of £ = 10 and ¢ = 20
shows that as ¢ increases, the trends of the ¢-trajectory become
closer to the user level, while as ¢ decreases, the trends
become closer to the event level. This indicates that through
customization, OffloadingBD can balance privacy and utility
more flexibly than the other two methods.

Additionally, we organized a comparative experiment to
contrast the performance differences between OffloadingBD
and other algorithms that satisfy w-event differential privacy
in MEC offloading systems. We selected Uniform, Sample,
and BD [23] as the comparison benchmarks. We compare
OffloadingBD with the benchmarks in different settings by
varying the privacy budget, and the experimental results are
shown in Fig. 9. We can see that, with the same reconstruction
attack accuracy, OffloadingBD has a smaller cost, meaning that
the system’s utility is better preserved.
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VII. DISCUSSION AND FUTURE WORK

This paper delves into the limitations of existing protection
methodologies and subsequently advances remedial strategies
for enhancement. A pertinent query arises, though: Given
that wireless communication channels are inherently prone to
significant levels of ambient noise, and users may encounter
variability in their device performance, shouldn’t the pre-
liminary step in our discourse be to ascertain whether the
system itself harbors inherent location privacy vulnerabilities?
To answer this question, we conducted extensive empirical
studies under the experimental configuration in Sec. III, which
is shown in Appendix. The study conducts a comprehen-
sive correlation analysis of the collected bandwidth-distance
measurements, revealing significant negative correlation coeffi-
cients. Further analysis demonstrates that even with substantial
task fluctuations, the offloading trajectory still contains rich
location-related channel state information. Please refer to the
Appendix for details.

The proposed Learning-based Trajectory Reconstruction
Attack (LTRA) exhibits certain limitations, such as the effec-
tiveness of LTRA 1is contingent upon the presence of certain
data patterns, which may not be universally applicable across
all datasets and LTRA may experience reduced robustness
when deployed in more intricate network settings, where the
underlying assumptions of the attack may no longer hold. In
terms of future work, we aim to develop more sophisticated
attack methods, mapping channel conditions to finer-grained
location information, while also exploring enhanced protection
techniques. Additionally, expanding our investigations from
single-server to multi-server models is a key direction for
further research.

VIII. CONCLUSION

In conclusion, our research highlights the limitations of
existing privacy protection methods in MEC systems. We
propose a learning-based inference attack, LTRA, which
demonstrates the inadequacy of event-level perturbation meth-
ods in preserving location privacy. Moreover, we introduce
OffloadingBD, a novel privacy-preserving mechanism, which
achieves a better balance between privacy and utility compared

4405

o
=3
)

&
o
o

Bandwidth(Mbps)
Bandwidth(Mbps)

200 3 ry
080 8 sl
$o WP KA

° AKX -

0 200 400 600
Distance(m)

Distance(m)

(b) WiFi Bandwidth-Distance.

(a) 5G Bandwidth-Distance.

)
10 *  WiFi AP S50
Room1 =
Room?2 z 40
3 5 Room3 §
5 Room4 _g 30
Y * S
& 320
> o
_5 o
©10
2
>
<o
-5 0 5 10 15 Room 1 Room 2 Room 3 Room 4

X position (m) Route

(c) Robot routes. (d) Grouping according to routes.

Fig. 10. Relationship between bandwidth and distance.

to existing approaches. Our empirical experiments, conducted
on both simulated and practical systems, validate the effec-
tiveness of our proposed solutions.

APPENDIX

We aim to validate coarse-grained through a practical sys-
tem whether MEC-enabled computational offloading indeed
poses potential threats to users’ location privacy.

The foundation for considering computation offloading as a
potential avenue for privacy invasion rests upon the strong
correlation often observed between channel conditions and
the proximity of devices to base stations. To rigorously
assess the universality of this assumption, we meticulously
conducted an experiment. Specifically, by maneuvering the
devices within the transmission range of both Wi-Fi AP
and the 5G base station, we performed computational tasks
while leveraging offloading capabilities. In our experimental
setup for distance measurement, for 5G networks, we have
directly integrated GPS to accurately capture and record device
movement trajectories. For WiFi, we have implemented an
RGBD camera-based system to facilitate indoor mapping and
positioning.

Fig. 10 (a) and (b) present illustrative examples underscor-
ing the persistent connection between distance and bandwidth.
Despite the obscuring effects of noise, a clear trend indicating
that bandwidth diminishes with increasing distance from the
base station can be identified.

Fig. 10 (c) shows the movement path in Fig. 10(b). Due to
high indoor occlusion, the relationship between WiFi signal
and distance is not as significant as that of outdoor 5G
signal. However, the occlusion itself is also a part of the geo-
information. We create Fig. 10(d) based on Fig. 10(c), and it
can be seen that the average bandwidth within each group has
a strong correlation with the actual path.

To consolidate these visual insights, we conduct a compre-
hensive correlation analysis on the entire dataset of collected
bandwidth-distance measurements. The results, summarized in
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TABLE I
ANALYSIS BASED ON THREE CORRELATION COEFFICIENTS
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5G -0.8816 -0.68 -0.88
WiFi -0.7862 -0.59 -0.66
(%)
= N
Q@
=2 0.6
©
[]
2 K= Inf
2047 —— K=2
° K=3
S K=4
O 0.2 ; ; . :
0 5 10 15 20
Range (b)

Fig. 11. Pearson correlation coefficient of optimal ratio and bandiwidth under
different b.

Table II, reveal three distinct types of correlation coefficients.
Notably, all calculated coefficients exhibit values lower than
—0.5, thereby providing quantitative confirmation that the
observed decrease in bandwidth with distance holds across the
dataset. This statistical evidence solidifies our assertion that
there is a statistically significant negative correlation between
distance and bandwidth, affirming the potential for bandwidth
to serve as a proxy for estimating device location in certain
contexts.

Typically, the server only receives the tasks offloaded onto
them and does not know the total amount of tasks generated in
each time slot by the user. In other words, the offloading ratio
pattern is masked by a multiplicative noise. We conducted
a correlation analysis of the task generation process with
different degrees of fluctuations. After binning-and-average
operations on both bandwidth sequence and offloaded task
size sequence, we surprisingly discover that rich channel state
information remained even with significant task fluctuations.

Following the majority of studies in Table I in the main
body, we set the number of samples D for inference at each
time slot as a uniformly distributed random variable, i.e.,
D ~ U(0,b), where b denotes the upper bound of the range.
Then, by systematically escalating the value of parameter b,
we obtain a set of trajectories.

Further, for each bandwidth sequence, we first perform
K-means clustering on the bandwidths. Next, we discretize
the bandwidth sequence based on the clustering result corre-
sponding to each bandwidth. The bandwidths belonging to the
smallest cluster center are set as 0, the second smallest is 1,
and so on, until the largest is K. Moreover, for subsequences in
the bandwidth sequence where consecutive slots have the same
value, assign to these slots’ corresponding offloaded task size
sequences the average of the offloaded task sizes associated
with those slots.

We meticulously investigate the correlation (absolute value
of Pearson coefficient) between the offloading ratio and the
corresponding offloaded volume across diverse b values, which
is shown in Fig. 11. From Fig. 11, it can be observed that while
the correlation indeed significantly decreases as the value of
b increases, after implementing straightforward binning and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

averaging measures, at b = 20, the correlation still remains
relatively high. This strongly demonstrates that even when the
task fluctuation is substantial, the optimal offloading trajectory
still carries rich information about channel state (location).
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