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Abstract—Transformer-based models have unlocked a plethora
of powerful intelligent applications at the edge, such as voice as-
sistant in smart home. Traditional deployment approaches offload
the inference workloads to the remote cloud server, which would
induce substantial pressure on the backbone network as well as
raise users’ privacy concerns. To address that, in-situ inference has
been recently recognized for edge intelligence, but it still confronts
significant challenges stemming from the conflict between inten-
sive workloads and limited on-device computing resources. In this
paper, we leverage our observation that many edge environments
usually comprise a rich set of accompanying trusted edge devices
with idle resources and propose Galaxy+, a collaborative edge AI
system that breaks the resource walls across heterogeneous edge
devices for efficient Transformer inference acceleration. Galaxy+
introduces a novel hybrid model parallelism to orchestrate collab-
orative inference, along with a heterogeneity and memory-aware
parallelism planning for fully exploiting the resource potential. To
mitigate the impact of tensor synchronizations on inference latency
under bandwidth-constrained edge environments, Galaxy+ de-
vises a tile-based fine-grained overlapping of communication and
computation. Furthermore, a fault-tolerant re-scheduling mech-
anism is developed to address device-level resource dynamics, en-
suring stable and low-latency inference. Extensive evaluation based
on prototype implementation demonstrates thatGalaxy+ remark-
ably outperforms state-of-the-art approaches under various edge
environment setups, achieving a1.2× to4.24× end-to-end latency
reduction. Besides,Galaxy+ can adapt to device-level resource dy-
namics, swiftly rescheduling and restoring inference in the presence
of unexpected straggler devices.
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I. INTRODUCTION

TRANSFORMER-BASED models [1], [2] have achieved
superior performance in the field of Natural Language

Processing (NLP) and driven increasing intelligent applications
at the network edge [3]. In edge intelligent applications, such
as AI assistants in smart homes [4], voice-controlled robots in
smart factories [5] and intelligent traffic management systems
in smart cities [6], single-shot inference (referring to single-
command requests) tasks are prevalent, necessitating efficient
and low-latency inference for seamless user interactions. Cur-
rently, most Transformer-based intelligent applications heavily
depend on cloud services, with the actual inference of large-scale
Transformer-based models taking place in the cloud [7], [8].
At the edge, only a proxy daemon is deployed to forward user
requests [4]. However, the cloud-assisted approaches suffer from
following issues: (1) Quality-of-Service may suffer due to unre-
liable and delay-prone wide-area network (WAN) connections
between edge devices and remote clouds [9]. (2) Inference
requests from numerous edge clients can impose significant
pressure on both the backbone network and datacenters. (3) The
sensory data in edge intelligent applications can contain highly
sensitive or private information. Transferring these data to the
remote cloud owned by commercial companies inevitably raises
users’ privacy concerns [10]. A recent survey on LLM-based
edge applications [11] indicates that more than 80% of industry
experts advocate for personal LLMs to be fully or primarily
deployed at the edge, emphasizing the critical need for privacy-
preserving model inference.

To address that, in-situ inference [12], [13] on edge devices
without remote assistance, which keeps data locally and avoids
network transmission, has been recognized as a promising
paradigm for intelligent applications at the edge. However, the
computation-intensive and resource-hungry nature of Trans-
former inference presents significant challenges for resource-
constrained edge devices [14], [15]. As we will show in Sec-
tion II-B, inference on the BERT-L model [1] using an off-the-
shelf edge device, the Raspberry Pi 4 Model B [16], requires
a minimum available memory space of nearly 1.25 GB, while
experiencing 470× longer latency compared to one of today’s
most powerful datacenter GPUs, the NVIDIA A100 [17]. These
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Fig. 1. AI assistant in smart home scenario empowered by Galaxy+.

results demonstrate the fundamental contradiction between in-
tensive Transformer inference workload and constrained on-
board resources. To tackle these challenges, existing arts
explore to design sophisticated scheduling mechanisms to lever-
age the resource potential of edge devices [12], [18], [19], [20],
but are still bottlenecked by the limited onboard resource of a
single device.

Alternatively, we observe that prevalent edge environments
like smart homes usually comprise a rich set of trusted idle
devices in physical proximity [13], [21]. This motivates us to
regard vicinal available edge devices as a resource augmentation
and collaborate with them in a distributed manner to render expe-
dited Transformer inference at the edge. As illustrated in Fig. 1,
we can utilize the distributed computing resources in a smart
home (with tablet, smart speaker, and television) to accelerate the
Transformer-based (such as Bert [1] and GPT [22]) voice assis-
tant. Nevertheless, this paradigm brings several key challenges:
(1) how to parallelize the single-shot Transformer inference
workload among multiple edge devices, (2) how to decide the
workload partitioning strategy tailored to the resource budget
of heterogeneous edge devices, (3) how to reduce distributed
inference latency under bandwidth-limited edge environments,
(4) how to handle the unpredictable dynamics of available edge
resources, given that edge devices frequently host multiple edge
intelligence applications concurrently.

To address these challenges, we propose Galaxy+, a collab-
orative edge AI system that breaks the resource walls across het-
erogeneous edge devices for low-latency Transformer inference
to enable real-time in-situ edge intelligent services. Galaxy+’s
contribution goes beyond merely leveraging distributed edge de-
vices for deploying Transformer inference, instead it addresses
the above challenges on four levels. (1) To orchestrate heteroge-
neous assisted devices in maximal resource utilization to facili-
tate collaborative inference, a novel hybrid model parallelism
(HMP) that incorporates the best of both Tensor Parallelism
(TP) and Sequence Parallelism (SP) is introduced as a novel
parallel architecture to manage the distributed inference work-
flow. (2) To maximize resource utilization of HMP among edge
devices, a parallelism planning algorithm that comprehensively
accounts for both devices’ resource heterogeneity and memory
budget is equipped. (3) To achieve low-latency collaborative
inference in bandwidth-limited edge environments, we meticu-
lously decouple the tight data dependency between consecutive
computation and communication operations by decomposing

them into fine-grained tiles, thus enabling efficient overlapping
for synchronization. (4) The inherent resource dynamics of
edge devices exacerbate collaborative inference latency due to
the straggler effect. To mitigate this, we design and develop
an on-the-fly fault-tolerant re-scheduling module for efficient
runtime rescheduling and inference recovery. Extensive evalua-
tions on practical testbeds show that Galaxy+ achieves up to
4.24× speed-up over the state-of-the-art collaborative inference
approaches. A 4-way parallel inference with Galaxy+ can
achieve 85% scaling efficiency compared to the single device
case. Our fault-tolerant module can adapt to device-level re-
source dynamics, swiftly rescheduling and restoring inference
amid unexpected stragglers.

In summary, this paper makes the following contributions.
� Through extensive measurement studies on on-device and

parallel inference methods, we introduce a novel HMP
architecture to collaborate with trusted edge devices for
in-situ single-shot Transformer inference acceleration.

� We devise a heterogeneity and memory-budget aware HMP
planning algorithm to facilitate resource-efficient collabo-
rative edge inference.

� We propose a tile-based fine-grained optimization that
leverages the concept of communication and computation
overlapping to mitigate the synchronization overhead.

� We design and develop an on-the-fly fault-tolerant re-
scheduling module that efficiently adapts to device-level
resource dynamics.

� We implement Galaxy+ and evaluate it in realistic edge
testbeds. Experimental results show up to 4.24× latency
reduction over the state-of-the-art methods.

II. BACKGROUND AND MOTIVATION

A. Transformer-Based Models

Current language-related applications tend to use
Transformer-based models, which consist of stacks of
Transformer layers, enabling the scaling of language models
to hundreds or even thousands of billions of parameters.
The architectures of Transformer-based models can be
broadly classified into three main categories: encoder-decoder,
encoder-only, and decoder-only. The Transformer architecture
was originally introduced as an encoder-decoder model [23],
[24] for machine translation tasks. Encoder blocks extract
high-level features from the input sentence, while the decoder
blocks takes these features and generates tokens in the target
language. In subsequent works, encoder-only architectures [1],
[25] and decoder-only architectures [22], [26] emerged, each
adopting only the encoder or decoder component from the
original architecture. In this work, our design is applicable to
edge collaborative parallel acceleration for general Transformer
architectures, including encoder-only, decoder-only, and hybrid
configurations combining both them.

Fig. 3 depicts a detailed Transformer layer architecture for
encoder-only and decoder-only models. In a Transformer layer,
the primary components are the Multi-head Attention (MHA)
block and the Multilayer Perceptron (MLP) block. These com-
ponents are connected through element-wise operations such as
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Fig. 2. Different parallelism plans of collaborative Transformer inference.

Fig. 3. A detailed Transformer layer architecture for the encoder-only and
decoder-only model.

Dropout, Residual Addition, and Layer Norm. We refer to the
parts connecting the MHA and MLP blocks as the connection
(CONN) block. In MHA block, the first linear layer generates
query (Q), key (K), and value (V) matrices for each attention
head. Each head conducts self-attention independently, and their
outputs are concatenated and further processed through a final
linear layer to obtain the output. MLP block involves two linear
operations that first expand the hidden size to a larger dimension
and then compress it back to its original size. The core dif-
ference between encoder-only and decoder-only architectures
lies in their attention mechanisms: encoder-only models use
bidirectional self-attention, allowing each token to attend to all
others, while decoder-only models apply a unidirectional mask
to ensure that each input token can only attend to previous tokens.

The encoder-decoder architecture consists of a stack of N
encoder layers and a stack of N decoder layers. The input is
first processed by the encoder layers before passing through the
decoder layers to generate the final output. The key difference
between encoder-only and decoder-only models is that the en-
coder stack’s output is fed into each decoder layer, requiring
an additional multi-head attention mechanism for integration,
as shown in Fig. 4. As all three architectures are fundamentally
stacks of encoder- or decoder-based Transformer blocks, this pa-
per uses encoder-only and decoder-only architectures as exam-
ples to illustrate the hybrid parallelism design (Section III-B1),
with further discussion on extension to the encoder-decoder
architecture in Section III-B3.

B. Transformer Inference on Resource-Limited Edge Devices

In-situ inference can leverage idle resources in edge en-
vironments while fully preserving users’ data privacy, mak-
ing it a widely utilized paradigm in privacy-sensitive edge

Fig. 4. Transformer-based models with the encoder-decoder architecture.

TABLE I
INFERENCE LATENCY AND MEM

applications [13], [27]. However, the resource-intensive nature
of Transformer inference presents significant challenges for
resource-limited edge devices [28], [29]. We conduct exper-
iments to analyze how limited computation resources affect
on-device Transformer inference. The experimental setup is
described in Section IV-A, and the results are presented in
Table I. Specifically, we perform on-device inference for five
typical Transformer-based models on off-the-shelf edge devices
and the Nvidia server-grade GPU platform and report the average
per-token inference latency and model memory footprint. We
observe that the inference latency exhibits a huge gap between
Nvidia A100 GPU [17] and Raspberry Pi 4 Model B [16], e.g.,
360× slowdown for RPi 4B(M) when comparing with Nvidia
A100 GPU on DistilBert. Memory budget is another critical
factor in Transformer inference. ViT-Huge, in full-precision
floating-point format, incurs a 2.5 GB memory footprint during
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Fig. 5. Galaxy+ system overview.

inference, exceeding the predefined 1.5 GB memory budget of
our RPi 4B(M) and resulting in out-of-memory (OOM) errors.
Even with half-precision floating-point, the model still demands
over 1.3 GB of memory, a footprint that remains unacceptable
for many mobile edge devices.

To mitigate resource constraints, we leverage our observa-
tion that edge environments often consist of multiple trusted
edge devices in physical proximity. This enables mutually-
trustworthy computation resource sharing among these edge
devices [13], [15].

C. Collaborative Transformer Inference With Multiple Devices

In collaborative Transformers inference across edge devices,
the key question is the choice of parallelism strategy. We illus-
trate different parallelism plans in Fig. 2.

1) Data and Pipeline Parallelism: Data Parallelism (DP)
and Pipeline Parallelism (PP) are the common way to execute
Transformer-based model in parallel [30], [31], [32]. DP par-
titions workloads along the sample dimension, allowing each
device to perform inferences independently. In edge intelligence
services, where single-shot inference requests are frequently
raised (e.g., sending a single piece of voice command to a
smart assistant), DP is not applicable due to the absence of data
batches. PP horizontally partitions the model into consecutive
stages along layer dimension, with each stage mapped to a
distinct device. However, in the case of single-shot inference, PP
still falls short in leveraging multiple edge devices concurrently,
as the inter-stage data dependencies force each device to await
completion of the preceding one.

2) Model Parallelism: Model Parallelism (MP) is a paral-
lel computing paradigm that horizontally partitions the opera-
tions within a model layer, facilitating concurrent execution of
single-shot inference. The most common techniques of model
parallelism applied to Transformer models are Tensor Model
Parallelism (TP) [28], [33] and Sequence Model Parallelism
(SP) [34]. TP partitions model weights across devices, each
hosting a subset of parameters, yet it fails to parallelize some
element-wise operations between MHA and MLP block. In
contrast, SP segments the input along the sequence dimension,
facilitating parallelism for all operations, but requires each de-
vice to store the entire model parameters. Due to intra-layer
data dependencies, synchronization points are inserted during
model parallelism to ensure consistency between collaborative

and local inference results. However, these synchronization
points introduce significant communication latency, potentially
becoming a bottleneck in inference performance, especially in
bandwidth-limited edge environments.

Summarizing the above analysis motivates our design of a
hybrid model parallelism architecture that incorporates the best
of both TP and SP, with a communication optimization approach
to mitigate synchronization overhead.

III. Galaxy+ DESIGN

A. Galaxy+ Workflow

Our system design aims to concurrently utilize multiple het-
erogeneous edge devices to achieve low-latency in-situ Trans-
former inference. Fig. 5 illustrates the workflow of our proposed
Galaxy+, which features three primary phases: Preprocess-
ing Phase, Parallelism Planning Phase and Execution Phase.
Preprocessing Phase is an offline procedure that runs once
before deployment. Galaxy+ Profiler performs an inference
process using calibration data as input on the physical edge
devices to record the run-time traces necessary for parallelism
planning (step ❶). In parallelism planning phase, Galaxy+
adopts a novel hybrid model parallelism (HMP) architecture
that incorporates both TP and SP to orchestrate distributed edge
devices (step ❷). Galaxy+ Planner takes profiling results from
Galaxy+ Profiler as input to generate a parallelism planning
configuration (step ❸). This configuration comprehensively con-
siders both resource heterogeneity and memory budget, and is
subsequently applied to target Transformer-based models and
edge devices in Execution Phase for efficient edge collaborative
inference (step ❹). Distributed inference inevitably involves
tensor synchronization operations. Galaxy+ incorporates a
tile-based fine-grained communication optimization to mitigate
the performance degradation brought by additional communi-
cation overhead (step ➎). The dynamic resource fluctuations
of edge devices amplify collaborative inference latency due to
the straggler effect. Galaxy+ further propose an on-the-fly
fault-tolerant rescheduling module that enables efficient runtime
rescheduling and inference recovery (step ➏). With the above
modules, Galaxy+ focuses on the following design goals:
� A novel HMP architecture incorporates both TP and SP

for low-latency single-shot Transformer inference across
multiple edge devices (Section III-B).
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Fig. 6. Matrix representation of the first parallelism scheme (Scheme-1) in our hybrid model parallelism architecture, where TP is applied to both the MHA
block and MLP block while SP is applied to CONN block.

Fig. 7. Matrix representation of the second parallelism scheme (Scheme-2) in our hybrid model parallelism architecture, where TP is applied only to the MHA
block, while SP is applied to both the MLP block and the CONN block.

� A judicious HMP planner that comprehensively considers
the edge device heterogeneity and memory budget, aiming
at distributing workload in a load-balanced manner and
fully exploit computing and memory resources of edge
devices (Section III-C).

� A tile-based fine-grained communication optimization de-
couples the tight dependency between consecutive com-
putation and communication operations, enabling efficient
overlapping between them (Section III-D).

� An on-the-fly fault-tolerant rescheduling module enables
efficient runtime rescheduling and inference recovery (Sec-
tion III-E).

B. Hybrid Model Parallelism

Galaxy+ incorporates an innovative hybrid model paral-
lelism (HMP) architecture that incorporates the merits of TP
and SP to facilitate efficient parallel Transformer inference
within edge environments. This section elaborates on our HMP
architecture using a collaborative inference example of encoder-
or decoder-only architectures deployed across two edge devices,
with further discussion on extending it to the encoder-decoder
model in Section III-B3. Figs. 6 and 7 illustrate two distinct
HMP schemes that optimize Transformer-based model infer-
ence, with one focusing on memory scalability and the other on

communication efficiency. The proposed HMP architecture
combines these two schemes to achieve resource-efficient Trans-
former inference. Specifically, Fig. 6 depicts the first parallelism
scheme (Scheme-1), where TP is applied to both the MHA block
and MLP block while SP is applied to CONN block. Fig. 7
depicts the second parallelism scheme (Scheme-2), where TP is
applied only to the MHA block, while SP is applied to both the
MLP block and the CONN block.

1) Detailed Breakdown of Model Parallel Inference Process
for Each Block: In this subsection, we first provide a detailed
breakdown of the TP or SP inference processes for each block
in Transformer layers, as depicted in Figs. 6 and 7.

Tensor Parallelism on MHA Block. The aim of designing
an efficient TP approach is to reduce the data dependencies
among operators split across various devices, thereby reducing
the frequency of tensor synchronization [33], [35]. As illustrated
in Fig. 6, we exploit the inherent parallelism advantage of
MHA: the computation of multiple attention heads is entirely
independent. This head-level dependency allows us to split the
operations of each attention head across edge devices with-
out any tensor synchronization during the execution of Multi
Self-Attention operations. With this in mind, we partition the
weight matrices associated with key (WK), query (WQ), and
value (WV ) along their head dimension. The initial General
Matrix Multiply (GEMM) is distributed to distinct devices and
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parallelized along head dimension ( ). Subsequently, Self-
Attention corresponding to each attention head is carried out

locally on each respective device ( ). The final GEMM from
the output linear layer is parallelized along its row dimension,
ensuring alignment with the initial GEMM’s head-wise partition

( ). The operations on device i (i ∈ {0, 1}) can be formulated
as follows ([·|·] is the concat operation):

[Qi|Ki|Vi] = [WQ
i |WK

i |WV
i ] ·A,

Bi = Self-Attention(Qi,Ki, Vi),

Ci = WB
i Bi. (1)

Tensor Parallelism on MLP Block: As illustrated in Fig. 6,
the MLP block which comprises two consecutive GEMMs is
applied with TP. To obviate tensor synchronization between the
first and second GEMM operations, we leverage the concept
of matrix tiling to remove data dependencies. We partition the
weight matrix of the first GEMM along its column dimension

( ), and partition the second GEMM along its row to align with

the column-wise partition of the first GEMM ( ). The second
GEMM can directly take the output of the first GEMM as input
without a tensor synchronization point. The operations on device
i (i ∈ {0, 1}) can be formulated as follows:

Ei = GELU(WD
i D),

Fi = WE
i Ei. (2)

Sequence Parallelism on MLP Block: In addition to TP, our
HMP architecture also employs SP to parallelize the MLP block,
as illustrated in Fig. 7. We observe that the inference process
of MLP blocks enables fully independent token computation
within the input sequence, unlike the MHA module, which re-
quires calculating inter-token relationships. This independence
provides opportunities for parallel inference without introducing
additional tensor synchronization overhead. Specifically, full
model weights required for the MLP block are loaded into
devices’ memory. Prior to MLP block inference, the input se-
quence is partitioned along the sequence dimension into multiple
sub-sequences, which are then processed independently on sep-

arate devices without tensor synchronization ( and ). The
operations on device i (i ∈ {0, 1}) can be formulated as follows:

Ei = GELU(WDDi),

Fi = WEEi. (3)

Sequence Parallelism on Connective Block: The above par-
allelism designs accelerate the most computationally inten-
sive parts of each Transformer layer (MHA and MLP blocks)
while leaving the Dropout, Residual Addition and Layer Norm
connecting the MHA block and the MLP block untouched

( ). Although these operations are element-wise and entail
no intensive matrix multiplication, they require a considerable
amount of memory access, thus also yielding a non-negligible
execution latency. We notice that these element-wise operations
are independent along the sequence dimension which allows
us to parallelize them by partitioning the input sequence. The

TABLE II
ANALYSIS ON COMPLEXITY OF VARIOUS PARALLELISM METHODS

operations on device i (i ∈ {0, 1}) can be formulated as follows:

Hi = Layernorm(ResidualAdd(Dropout(Gi))). (4)

2) Two Schemes of Hybrid Model Parallelism: To achieve
optimal inference latency under limited computation and com-
munication resources in edge environments, we design two
distinct HMP schemes.

Scheme-1. As illustrated in Fig. 6, the first scheme applies
TP to both the MHA and MLP blocks, while SP is assigned
to the CONN block. To ensure that the inference results from
our parallel inference align with the local inference results,
synchronization points are required at the end of these paral-
lelism blocks. Towards the completion of TP on both MHA and
MLP blocks, a ReduceSum operation is required to aggregate
the computation results across multiple devices (G← C0 + C1

and G← F0 + F1). Subsequently, the aggregated results are
partitioned along the sequence dimension and scattered across
various edge devices for SP ([G0|G1]← G). These two oper-
ations can be efficiently combined and implemented using a

single ReduceScatter operation ( ). Towards the completion
of SP on CONN block, each device retains only a segment of
the input sequences. It is essential to gather all these fragments,
concatenate them, and distribute them across all devices for sub-
sequent TP (A← [H0|H1] and D ← [H0|H1]). Consequently,
we perform an AllGather communication primitive at the end of

each CONN block ( ).
Scheme-2. As illustrated in Fig. 7, the second scheme applies

TP to only the MHA blocks, whereas SP is applied to both
the MLP block and the CONN block. Similar to Scheme-1,
Scheme-2 uses a ReduceScatter operation to connect the end

of the MHA block to the beginning of the CONN block ( ),
and an AllGather operation to link the end of the CONN block

back to the MHA block ( ). In contrast to Scheme-1, Scheme-2
adopts SP for both the MLP and CONN blocks, eliminating the
need for tensor synchronization at their boundaries and signifi-
cantly reduces communication overhead. However, applying SP
to the MLP block necessitates that each device holds the full
block weights (WD and WE), which prevents leveraging the
collective memory of multiple edge devices.

We analyze and summary the model memory usage, compu-
tation volume, and communication volume for above two HMP
schemes in single sequence inference, as detailed in Table II. P1

and P2 represent the total number of model parameters in the
MHA and MLP blocks, respectively. N refers to the number of
edge devices, C denotes the total floating-point operations for
a single sequence inference, L indicates the number of Trans-
former layers, S represents the input sequence length, and H is
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Fig. 8. Illustration of applying the HMP design to an encoder-decoder model.
The colors of the parallel blocks are consistent with those in Figs. 6 and 7.

the hidden state size of the target Transformer-based models. We
can observe that both Scheme-1 and Scheme-2 enable parallel
acceleration of Transformer-based model inference. Scheme-1
more effectively utilizes collective memory, while Scheme-2
significantly reduces communication overhead by up to 50%.

3) Extension to Encoder-Decoder Architecture: In the previ-
ous sections, we introduced our hybrid model parallelism (HMP)
design using the encoder- or decoder-only models illustrated
in Fig. 3 as examples. In practical deployments, our HMP
architecture is highly versatile and seamlessly extends to various
Transformer architectures, including encoder-decoder models.
Fig. 8 illustrates the application of the HMP architecture to an
encoder-decoder Transformer model. As illustrated in Fig. 4(a),
an encoder-decoder model processes the input through stacked
encoder layers followed by stacked decoder layers. Thus, the
HMP design can be applied separately to the encoder and de-
coder stacks. The application of HMP Scheme-1 and Scheme-2
to the encoder stack is consistent with that in encoder- and
decoder-only models, as shown in Fig. 8(a) and (c). The decoder
layer contains an additional masked multi-head attention block
compared to the encoder layer. We parallelize the masked MHA
block using the same TP as the MHA block and apply SP to the
surrounding CONN blocks to achieve full parallelization of the
decoder stack, as shown in Fig. 8(b) and (d).

4) Merits of Hybrid Model Parallelism Architecture: Em-
ploying the HMP architecture presents numerous advantages
over straight TP [33] or SP [34] architecture.

Compared to TP: (1) Both HMP Scheme-1 and Scheme-2
architectures eliminate redundant computations in the CONN
blocks through SP, further enhancing the parallel potential of
Transformer layers. (2) HMP Scheme-1 does not introduce addi-
tional communication overhead. At first glance, state-of-the-art
TP [35] requires two AllReduce, while the HMP Scheme-1
requires two ReduceScatter and two AllGather operations per
Transformer layer inference. However, in the implementation of

TABLE III
TABLE OF NOTATIONS FOR PARALLELISM PLANNING

communication primitives, the communication volume of a sin-
gle Ring-AllReduce operation equates to a Ring-ReduceScatter
followed by a Ring-AllGather [36]. HMP Scheme-2 can signifi-
cantly reduce communication overhead by up to 50% compared
to TP, as it requires only one AllGather and one ReduceScatter
operation. (3) HMP architecture splits the larger AllReduce
operation used by TP into two smaller primitives, ReduceScatter
and AllGather, which greatly facilitates our tiled-based commu-
nication overlapping proposed in Section III-D.

Compared to SP: SP partitions the input tensor along se-
quence dimension without partitioning the weight matrices. This
paradigm requires each device to accommodate a holistic copy of
the global model. Both HMP Scheme-1 and Scheme-2 mitigate
this issue by distributing all or part of model parameters across
edge devices, thereby breaking the memory wall of individual
devices and achieving memory resource scalability.

C. Heterogeneity and Memory-Aware HMP Planning

To achieve resource-efficient edge collaborative HMP infer-
ence, a heterogeneity and memory-aware HMP planning algo-
rithm is essential for determining model partitioning and opti-
mizing the use of different schemes. As shown in Figs. 6 and 7,
synchronization points are necessary after the completion of TP
or SP blocks, with their initiation constrained by the completion
time of the slowest device (straggler). This straggler effect can
lead to resource under-utilization on faster devices. Given the
inherent heterogeneity in both computational capabilities and
memory budgets across edge devices, it is crucial to adopt
a workload planning strategy that not only ensures balanced
distribution but also prevents any device from experiencing
OOM issue. Additionally, since Scheme-1 prioritizes memory
efficiency and Scheme-2 focuses on reducing communication
overhead, the planning algorithm must also determine the num-
ber of transformer layers assigned to Scheme-1 and Scheme-2,
respectively, to achieve an optimal trade-off between memory
usage and communication latency. Table III summarizes the
notations used in our planning algorithm.
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1) Optimization Target Formulation: As illustrated in Figs. 6
and 7, our HMP architecture allocates workload by partitioning
along three dimensions: the head dimension for the MHA block,
the row dimension of the weight matrix for the MLP block,
and the sequence dimension of the input tensor for both the
MLP and CONN blocks. Our workload planning focuses on
determining the partition configuration for each of these blocks,
namely: the MHA blocks partitionA = {a0, a1, . . ., aN−1}, the
MLP blocks partition B = {b0, b1, . . ., bN−1}, and the input
sequence partitionS = {s0, s1, . . ., sN−1}, whereN is the num-
ber of edge devices. We introduce the notation T (MHA,Ad, d),
T (MLP,Bd, d), T (MLP,Sd, d), and T (CON,Sd, d) to repre-
sent the execution latency of the MHA block, the MLP block, and
the CONN block on device d, given their partition configurations
Ad, Bd, and Sd, respectively. It is important to note that, within
the MLP block, Bd partition configurations utilize TP, whereas
Sd configurations adopt SP. Since each TP or SP block is
followed by a tensor synchronization point, its collaborative
execution time for each TP or SP block determined by the
straggler:

TMHA(A) = max
d∈{0,1,...,N−1}

T (MHA,Ad, d),

TMLP(B) = max
d∈{0,1,...,N−1}

T (MLP,Bd, d),

TMLP(S) = max
d∈{0,1,...,N−1}

T (MLP,Sd, d),

TCON(S) = max
d∈{0,1,...,N−1}

T (CON,Sd, d).
(5)

In addition to determining the block partitioning results,
another configuration that our HMP planning must determine
is the allocation of each Transformer layer in the target model
between Scheme-1 and Scheme-2. We denote the number of lay-
ers assigned to Scheme-1 as P , and those assigned to Scheme-2
as Q. We denote the time for a single AllGather operation as
TAG and for a ReduceScatter operation as TRS. We formulate the
inference latency for a Transformer-based model, with layers
processed by Scheme-1 and Scheme-2, respectively, as follows:

Tscheme-1 = P × [TMHA(A) + TMLP(B) + TCON(S)
+ 2× (TAG + TRS)], (6)

Tscheme-2 = Q× [TMHA(A) + TMLP(S) + TCON(S)
+ (TAG + TRS)]. (7)

Beyond minimizing the execution latency, our planning al-
gorithm also requires to prevent OOM errors during inference.
The overwhelming memory footprint in deploying Transformer-
based models stems from the substantial weight matrices housed
within the MHA and MLP blocks. We denote MMHA and MMLP

as the memory footprint of loading one MHA block and one
MLP block, respectively. For Scheme-1, the memory footprint
for MHA and MLP blocks on each device is directly proportional
to the number of assigned attention heads and the number of
rows in the weight matrix. For Scheme-2, the memory footprint
for MHA is proportional to the number of assigned attention
heads, while each device must store the full weight matrix for

the MLP block. We formulate the memory footprint of device
d during collaborative inference of a Transformer-based model,
with separate formulations for layers processed by Scheme-1
and Scheme-2, as follows:

Md
scheme-1 = P ×

(
ad∑AMMHA +

bd∑BMMLP

)
,

Md
scheme-2 = Q×

(
ad∑AMMHA +MMLP

)
. (8)

Let µd denotes the memory budget allocated to device d.
Putting them together, the optimization objective for minimizing
the latency under memory constraints is as follows:

min
A,B,S,P,Q

(
Tscheme-1 + Tscheme-2

)
,

s.t. Md
scheme-1 +Md

scheme-2 < µd,

where d ∈ {0, 1, . . . N − 1}. (9)

To facilitate our workload planning algorithm, we employ
Galaxy+ Profiler, which conducts an inference process using
calibration dataset as input on the physical edge devices to
record the run-time profile necessary for parallelism planning.
The profiler meticulously captures the computation and com-
munication latency under a variety of partition configurations,
for both TP and SP blocks. Simultaneously, Galaxy+ Profiler
records model information, including the number of parameters
and the memory footprint of the MHA and MLP blocks.

2) HMP Planning Algorithm: A straw-man approach to ad-
dress the above constrained optimization problem (9) would
involve an exhaustive search of all possible partitioning and
scheme combinations, subsequently selecting the optimal solu-
tion that satisfies the memory constraints. However, this method
suffers from an exponential complexity, rendering it infeasible
for large-scale Transformer models.

To efficiently solve (9), we designed a two-step heuristic
algorithm, outlined in Algorithm 1. In the first step, our algo-
rithm disregards memory constraints and applies Scheme-1 to all
Transformer layers, distributing the workload according to each
device’s computing capacity to achieve a balanced allocation
(lines 28-30). This proportional partition (lines 1-6) allows for
a fast and approximate division, enabling all devices to complete
their tasks as simultaneously as possible. Since the partitioning
strategy for input sequence length does not impact memory
footprint, we consistently employ proportional partitioning to
determine S for input sequences of any length. We define a
device’s computing capacity Vd as the inverse of the total time
required to execute a MHA, MLP, and CONN block on device
d.

Vd =
[
T
(

MHA,
∑
A, d

)
+ T

(
MLP,

∑
B, d

)

+ T
(

CON,
∑
S, d

)]−1
. (10)

Subsequently, building on this initial distribution, the second
step involves first checking whether any device encounters an
OOM issue. If any device encounters an OOM issue, we fine-
tune the workload allocation accordingly. It redistributes excess

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 25,2025 at 12:35:30 UTC from IEEE Xplore.  Restrictions apply. 



YE et al.: RESOURCE-EFFICIENT COLLABORATIVE EDGE TRANSFORMER INFERENCE WITH HYBRID MODEL PARALLELISM 10953

workloads from devices that surpass their memory budgets to
those with spare memory capacity. (lines 31-35). Considering
that the granularity of partitioning for MHA block (head di-
mension) is typically coarser than that of MLP block (column
dimension), we first redistribute the workload for MLP block
(line 32), followed by MHA block (line 33). If OOM errors
persist despite workload redistribution, this indicates that the
edge devices involved in collaborative inference are not capable
of accommodating the target Transformer-based model, thus
resulting in the algorithm’s failure (lines 34-35). If no device
encounters an OOM issue after evenly distributing the workload
and additional memory remains available, we then iteratively
analyze each Transformer layer currently using Scheme-1, pro-
gressively substituting them with Scheme-2 until an OOM ex-
ception occurs on any device. This refinement strategy enhances
memory efficiency while minimizing communication overhead,
thereby leveraging memory resources more effectively (lines
36-37).

The HMP planning is an offline procedure that runs once
before deployment. The time complexity for Algorithm 1 ex-
hibits a upper bound of O(N +N3). In our experiment, the
planning time is under ten seconds on a domestic desktop for 4
heterogeneous edge devices.

D. Tile-Based Communication Optimization

In contrast to stable, high-bandwidth networks in datacen-
ters, edge environments frequently grapple with inconsistent,
bandwidth-limited connections. This amplifies synchronization
latency during the collaborative inference, serving as a sig-
nificant bottleneck of global system performance. Overlap-
ping communication and computation is an effective optimiza-
tion strategy. However, its implementation becomes intricate
in the Transformer inference due to the strict data dependen-
cies between communication and computation. To address this,
Galaxy+ introduces a tile-based approach to effectively de-
couples their dependency to achieve a fine-grained overlapping.
We observe from Fig. 6 that each TP block starts and ends
with GEMM operations. We design to overlap these GEMM
operations with the AllGather and ReduceScatter operations
when entering and exiting the TP blocks. To illustrate this, the
following section provides an example of collaborative inference
across three devices, demonstrating how to overlap GEMMs
with synchronization points before and after the MLP blocks
(also applicable to the MHA blocks).

1) AllGather Overlapping: As illustrated in Fig. 6, a strict
data dependency exists between the AllGather and the initial ma-
trix multiply (GEMM1) in MLP block. Specifically, GEMM1 on
device i (i ∈ {0, 1, 2}) can only commence after the AllGather
has finished aggregating all sub-sequences:

D = AllGather(H0, H1, H2), Ei = GEMM1(D,WD
i ). (11)

To decouple the strict dependency between AllGather and
GEMM1, we leverage matrix tiling to decompose GEMM1.
We discover that the direct calculation of GEMM1 can be
equivalently achieved by segmenting matrix D horizontally into
tiles, executing the GEMM1 independently on each tile, and

Algorithm 1: Heterogeneity and Memory Aware HMP Plan-
ning.
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Fig. 9. Ring-AllGather overlapping.

subsequently concatenating the results.

Ei =

⎡
⎣H0 ·WD

i

H1 ·WD
i

H2 ·WD
i

⎤
⎦ =

⎡
⎣H0

H1

H2

⎤
⎦ ·WD

i = D ·WD
i . (12)

We employ a Ring-AllGather implementation and integrate
it with the above matrix tiling approach to overlap communi-
cation and computation. An example of an overlapping process
involving three collaborative devices is illustrated in Fig. 9. In
the context of a tile-based overlapping process that incorporates
N devices, typically N steps are required (three steps in this
case). We define (i+ 1)%3 and (i− 1)%3 represent the index
of succeeding and preceding device of device iwithin a 3-device
ring topology. Step 1: Device i performs GEMM operation
between on-device tileHi andWD

i , and concurrently dispatches
Hi to the succeeding device. In parallel, Device i receives and
stores the tile H(i−1)%3 transmitted from its preceding device.
Step 2: Device iperforms GEMM operation on tileH(i−1)%3 and
concurrently dispatches it to the succeeding device. In parallel,
Device i receives the tile H(i−2)%3 transmitted from its preced-
ing device. Step 3: Device i executes the GEMM operation on
the tileH(i−2)%3. Notably, the final step does not necessitate any
communication. The outcomes of the three GEMM operations
are concatenated along the sequence dimension, yielding the
final result Ei.

2) ReduceScatter Overlapping: As illustrated in Fig. 6, a
strict data dependency exists between the final matrix multi-
plication (GEMM2) in the MLP block and the ReduceScatter
operation (i ∈ {0, 1, 2}):

Fi = GEMM2(Ei,W
E
i ), Gi = ReduceScatter(F0, F1, F2).

(13)
To decouple the strict dependency between ReduceScatter

and GEMM2, we mirroring the tiling approach used with the
AllGather. We split the matrix Ei into three equally-sized
tiles Ei,r (r ∈ {0, 1, 2}) along the row dimension (aligns with
the partition configuration of connective block) and compute
GEMM2 independently for each tile (14). To obtain the final
resultGr, an additional ReduceSum operation across all devices

Fig. 10. Ring-ReduceScatter overlapping.

is necessary (15).
⎡
⎣Oi,0

Oi,1

Oi,2

⎤
⎦ =

⎡
⎣Ei,0 ·WE

i

Ei,1 ·WE
i

Ei,2 ·WE
i

⎤
⎦ =

⎡
⎣Ei,0

Ei,1

Ei,2

⎤
⎦ ·WE

i = Ei ·WE
i , (14)

Gr =
∑
i

Oi,r. (15)

Similar to AllGather, we employ a Ring-ReduceScatter im-
plementation coupled with matrix tiling to achieve communi-
cation and computation overlapping. As illustrated in Fig. 10,
the process of ReduceScatter overlapping also involves three
steps. Step 1: Device i performs GEMM operation between
tile Ei,(i+2)%3 and WE

i , yielding the result Oi,(i+2)%3. Step 2:
Device i perform GEMM operation on tile Ei,(i+1)%3 and yield
the result Oi,(i+1)%3. In parallel, device i forwards the GEMM
result in step 1 to the subsequent device. Upon receiving the
tile from the preceding device, Device i conducts a ReduceSum
operation between it and Oi,(i+1)%3. Step 3: Device i perform
GEMM operation on tile Ei,i and yield the result Oi,i. Device i
concurrently sends the result of ReduceSum in Step 2 to the sub-
sequent device. A ReduceSum operation is performed between
the tile received from the preceding device and Oi,i, yielding
the final result Gi.

Our tile-based communication optimization seamlessly over-
laps N − 1 rounds of ring communication with N rounds of
GEMM operation, without imposing additional overhead or
yielding results inconsistent with non-overlapping approaches.

E. Fault-Tolerant HMP Re-Scheduling

Existing collaborative inference system usually statically par-
titions inference workload among the workers [37]. However,
this static partitioning approach is not suitable for the edge envi-
ronment because of two reasons: (1) In practical deployments,
edge devices in environments such as smart homes typically host
multiple edge intelligence applications alongside collaborative
inference. The resource availability of an edge device depends
on user habits and application demands. When an edge device
engaged in collaborative inference runs additional applications,
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Fig. 11. Example of our fault-tolerant HMP re-scheduling. Here,hi represents
attention head i. When a straggler occurs, its assigned attention head computa-
tions are reallocated to other devices through re-scheduling.

the computational resources available for inference may be sig-
nificantly diminished or experience considerable fluctuations.
(2) As previously discussed, our HMP architecture incorporates
synchronization points across parallel blocks, making inference
latency bottlenecked by the slowest device. A significant drop
or fluctuation in a device’s computational capacity can cause it
to become a straggler, stalling other edge devices and severely
degrading the system’s overall response performence. To ad-
dress these challenges, we design and implement an on-the-fly
fault-tolerant HMP re-scheduling module, which consists of two
key steps to efficiently adapt to resource fluctuations:

1) Periodic Performance Reporting: As illustrated in
Fig. 11(Top), before collaborative inference begins, we desig-
nate one device as the portal node. During collaborative in-
ference, all involved devices periodically report their execution
latency for each parallel inference task. The portal node col-
lects and compares the execution times of the same inference
task across different devices. If a device repeatedly becomes a
straggler, meaning its inference latency is significantly higher
than that of other devices, we consider it to be experiencing a
significant drop or fluctuation in computational capacity. Con-
sequently, the device will be marked as unsuitable for partic-
ipating in collaborative inference, triggering On-the-fly HMP
Re-scheduling step.

2) On-the-fly HMP Re-scheduling: When the portal node de-
tects a device experiencing significant computational instability,
it will be temporarily excluded from collaborative inference,
and its workload is redistributed to other devices, as shown in
Fig. 11(Down). Specifically, we rerun Algorithm 1 to derive
a new balanced parallelism configuration, ensuring efficient
workload migration among the remaining edge devices. Notably,
this migration is purely logical, as inference tasks do not require
updating model weights. Rather than transferring weights over
the network, each device maintains a complete model weight
copy on disk and selectively loads it into memory according to
the updated configuration. After migration, the system continues
serving inference requests according to the updated parallelism
configuration. Similarly, once the straggler becomes idle again,
our re-scheduling mechanism will dynamically involve it back
into our collaborative inference system.

TABLE IV
SPECIFICATIONS OF RASPBERRY PI 4 MODEL B [16] AND THE HOMOGENEOUS

AND HETEROGENEOUS EDGE ENVIRONMENTS USED IN THE EVALUATION

IV. IMPLEMENTATION AND EVALUATION

We have fully implemented the prototype system of
Galaxy+ and baselines with∼2500 LoC in Python and C/C++
atop Pytorch [38]. Galaxy+’s idea is also portable and can
work well with other lightweight ML frameworks such as
llama.cpp [39], MNN [40] and TF-Lite [41]. In this section, we
evaluate the performance of Galaxy+ prototype for five differ-
ent sizes of Transformer-based models on physical testbeds.

A. Experimental Setup

Models and Datasets. We evaluated Galaxy+ using six rep-
resentative Transformer-based models for language and vision
tasks, ranging in size from 66 million to 1.3 billion parameters.
These include popular open-source models: the encoder-only
architectures DistilBERT [42], BERT [1], and Vision Trans-
former [25]; the encoder-decoder architectures T5 [24]; and the
decoder-only architectures GPT [22] and OPT [26], as detailed
in Table V. For language models, we extracted a subset of
samples with an average sequence length of 284 from the QNLI
corpus within the popular GLUE benchmark [43] for evaluation.
For vision models, we used the Mini-ImageNet dataset [44] with
an input size of 3× 224× 224.

Edge Environment Setup. We evaluate Galaxy+ across a
diverse range of realistic edge environments, incorporating both
homogeneous and heterogeneous configurations of off-the-shelf
edge devices (Raspberry Pi 4 Model B [16]), as detailed in
Table IV. In homogeneous environments, the available memory
budget for model inference on the RPi-M is set to 1.5 GB. In
the heterogeneous environments, the memory budgets are set at
2 GB for RPi-L, 1.5 GB for RPi-M, and 1 GB for RPi-S, respec-
tively. In our experiments, we primarily used the Raspberry Pi
4 Model B, equipped with an ARM Cortex-A72 CPU, to sim-
ulate resource-constrained edge devices commonly deployed in
environments such as smart homes or smart factories. However,
in Section IV-D, we also conducted a case study to demonstrate
the applicability of ourGalaxy+ framework for deployment on
consumer-grade GPU clusters. We interconnected multiple edge
devices via a switch with adjustable network speed and modified
the D2D bandwidth to emulate varying network conditions
representative of real-world edge environments.

Baseline Methods. We compare Galaxy+ with both single-
device method and state-of-the-art parallel methods:
� Local Inference (Local): Inference models on a single

device. We compare with it to analyze the scalability
performance of Galaxy+.
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TABLE V
MODEL SPECIFICATIONS AND OVERALL PERFORMANCE COMPARISON OF THE Galaxy+ WITH BASELINE PARALLEL INFERENCE METHODS

� Megatron-LM (M-LM) [33] is a state-of-the-art TP method
splits the weight matrix in MHA and MLP blocks to
parallelize the GEMM operators. An AllReduce synchro-
nization is required after each MHA and MLP block.

� Sequence Parallelism (SP) [34] is a state-of-the-art SP
method partitions the input along its sequence dimension
and parallelizes inference across workers. Two AllGather
synchronizations are required among each MHA block.

� EdgeShard (ES) [45] is a pioneering collaborative edge
LLMs inference system that employs pipelined architec-
ture to orchestrate edge devices.

� Galaxy [37] is the shorter conference version of this work.
It adopts a hybrid model parallel architecture but is limited
to designing and utilizing only HMP Scheme-1.

B. Comparison to Baselines

Table V summarizes the general performance results compar-
ing Galaxy+ with state-of-the-art parallel inference methods
M-LM, SP, EdgeShard and Galaxy. We conduct experiments
on both homogeneous and heterogeneous edge environments,
Env. A and B, each with 500 Mbps intra-cluster bandwidth.
We employ the average per-token processing latency as our
performance metric. The results indicate that owing to our
HMP architecture and tile-based communication optimization,
Galaxy+ outperforms baselines across various models and
edge environments.

In the homogeneous edge environment A,Galaxy+ achieves
an inference speedup of 1.25×-1.82× compared to Megatron-
LM (M-LM) This improvement is primarily due to Galaxy+’s
HMP architecture, which significantly reduces communication
overhead. While Megatron-LM’s tensor parallelism requires an
AllReduce tensor synchronization at every Transformer layer
during inference,Galaxy+’s HMP Scheme-2 architecture min-
imizes communication by performing only one AllGather and
one ReduceScatter operation, cutting the communication cost
to half compared to two AllReduce operations. Moreover, our
tile-based computation-communication overlapping optimiza-
tion effectively reduces the impact of network latency on system

performance. When compare to Sequence Parallelism (SP),
Galaxy+ achieves an inference speedup of 1.2×−1.34×. SP
requires each device to maintain a full set of model weights,
which limits memory scalability in edge environments as the
number of devices increases. This constraint leads to out-of-
memory (OOM) issues with larger models such as ViT-Huge,
GPT2-L, and OPT-L. Galaxy+’s HMP architecture address
this by partitioning the model weights across multiple devices,
enabling support for larger models through collective mem-
ory. In single-input sequence tasks, the pipelined approach of
EdgeShard degrades into sequential inference. In comparison,
Galaxy+ reduces latency by up to 3.59× by concurrently
utilizing the computational resources of multiple devices.

We further compared the performance of Galaxy+ with the
baselines in the heterogeneous edge environment B. We observe
that Galaxy+ consistently and significantly outperforms M-
LM and SP parallel inference methods in heterogeneous edge en-
vironments, achieving an inference latency reduction of 2.91×-
3.91×. This speedup is notably greater than the improvements
observed in homogeneous environments. Galaxy+’s superior
performance in heterogeneous edge environments derives from
its consideration of device heterogeneity, a factor overlooked
by M-LM and SP, both tailored for datacenters equipped with
homogeneous accelerators. While EdgeShard accounts for the
heterogeneity of edge resources, its performance is surpassed
by Galaxy+, which achieves up to a 4.24× speedup by fully
leveraging parallel resource utilization across multiple edge
devices. In addition to device heterogeneity, Galaxy+ work-
load planning comprehensively considers the memory budget
of edge devices, enabling them to collaboratively accommodate
the target model. In contrast, M-LM and SP overlook the mem-
ory constraints during parallelism planning, resulting in OOM
errors.

We also compare the shorter conference version of this work:
Galaxy. Galaxy employs hybrid model parallelism that inte-
grates the advantages of TP and SP but is limited to designing
and utilizing only HMP Scheme-1. Galaxy+’s further research
reveals that using only the HMP architecture with Scheme-
1 overlooks the potential optimization of applying sequence
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Fig. 12. Performance comparison of the Galaxy+ with baselines under various network bandwidth.

parallelism to the MLP block, which can reduce communica-
tion overhead by 50% per Transformer layer during inference.
Table V reports the speedup achieved over Galaxy and the
scheme configurations of Galaxy+’s HMP architecture, where
[a, b] indicates that a Transformer layers use Scheme-1 and b
layers use Scheme-2, with a+ b equaling the total number of
model layers. We observe that Galaxy+’s parallelism planning
algorithm strategically prioritizes the use of HMP Scheme-2,
which incurs lower communication overhead, while staying
within the constraints of the memory budget. Specifically, for
smaller models like DistilBert and Bert-L, Galaxy+ employs
HMP Scheme-2 across all Transformer layers to reduce com-
munication overhead. For larger models such as ViT-Huge,
T5-L, GPT2-L, and OPT-L, Galaxy+ optimally utilizes HMP
Scheme-2 while carefully managing memory constraints to pre-
vent OOM issues. Experimental results show thatGalaxy+ can
achieve up to a 1.41× speedup compared to Galaxy across
various Transformer-based models.

C. Evaluate With Various Network Bandwidth

We further compare Galaxy+’s performance with baselines
under varied network conditions in both Environment A and B.
Using the switcher’s traffic control, we simulate five D2D band-
widths to mimic various network conditions at edge. Evaluation
results are shown in Fig. 12. We observe that under varying
network bandwidth conditions, Galaxy+ consistently outper-
forms all baseline methods in both homogeneous and hetero-
geneous edge environments. When compare to Megatron-LM,
Sequence Parallelism and EdgeShard, Galaxy+ achieves an
inference latency reduction of 1.2×-2.57× in homogeneous en-
vironments and 1.56× to 4.3× in heterogeneous environments.
In homogeneous environments with high network bandwidth
(e.g., 1000 Mbps), M-LM and SP deliver inference performance
comparable to Galaxy+. However, as bandwidth decreases,
Galaxy+ exhibits greater resilience, owing to its HMP archi-
tecture and optimizations for overlapping communication and
computation. At very low bandwidth (e.g., 125 Mbps), M-LM’s
inference performance even falls below that of the sequential

TABLE VI
SPECIFICATIONS OF EDGE ENVIRONMENTS WITH MOBILE/CONSUMER-GRADE

GPUS

inference method, EdgeShard, as the communication bottleneck
negates the benefits of edge collaboration. This further demon-
strates the deployment advantages of the Galaxy+ in low-
bandwidth edge environments. When compared to Galaxy,
Galaxy+ achieves up to a 1.56× reduction in inference latency.
This improvement is particularly crucial in low-bandwidth edge
environments (e.g., 125 Mbps and 250 Mbps), where tensor syn-
chronization becomes a system performance bottleneck. In ex-
tremely low-bandwidth scenarios, optimizing communication-
computation overlap has limited effectiveness, and directly re-
ducing the frequency of tensor synchronization is the most
effective way to enhance inference performance.

D. GPU Support

Graphics Processing Units (GPUs), specialized for parallel
computing, offer significantly higher performance than CPUs
for tasks requiring concurrent processing. In recent years, the
adoption of GPU-equipped edge devices and servers has rapidly
increased, enabling more efficient real-time AI and machine
learning applications at the edge. In this section, to further
validate the effectiveness of the Galaxy+ framework in more
resource-rich edge environments, we evaluate its performance
on both mobile GPU-equipped edge device clusters and clusters
of consumer-grade Nvidia GPUs. We introduced two new edge
environments, C and D in Table VI. Environment C consists of
four COTS Nvidia Jetson Nano [46] edge devices connected
via a switch, with a D2D network bandwidth of 500 Mbps.
Environment D is an edge server node with four consumer-
grade Nvidia GeForce GTX 1080Ti GPUs [47], connected via
a PCIe switch. We also included a new decoder-only model,
OPT-XL, with 2.7B parameters in our experiments. We reported
the average per-token processing latency for Galaxy+ and
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Fig. 13. Performance comparison of Galaxy+ and baseline methods in GPU-equipped edge environments.

Fig. 14. Performance under weak scaling setup.

the baseline methods in environments C and D, as shown in
Fig. 13. Galaxy+ consistently demonstrates lower per-token
processing latency on both the Jetson Nano and Nvidia 1080Ti
clusters, achieving up to a 3.01× speedup on the Jetson Nano
cluster and up to a 3.62× speedup on the Nvidia 1080Ti cluster.

E. Scalability Analysis

To explore the scalability of our proposed hybrid model
parallelism (HMP) architecture, we conducted both weak and
strong scaling experiments in edge environment A (1000 Mbps)
and compared it with two classic parallel architectures, tensor
parallelism (TP) and sequence parallelism (SP), both of which
can reduce single-shot Transformer inference latency. To obviate
the impact of OOM errors on our experimental observations, we
load and repeatedly perform inference on one single layer, rather
than loading entire model.

1) Weak Scaling: In a weak scaling setup, the global work-
load increases proportionally with the number of devices. We
set a weak scaling with a fixed sequence length of 96 per device
(e.g. sequence length is equal to 384 for 4 RPi-M). The overall
system’s floating-point operations per second (FLOPS) are then
evaluated. As depicted in Fig. 14, we observe excellent scaling
performance of Galaxy+ in both GPT2-L and OPT-L. Specif-
ically, the GPT2-L case with 4-way (four RPi-M) HMP can
achieve 82% of linear scaling while the OPT-L case with 4-way
can achieve 85% of linear scaling. Compared to the baseline
methods, Galaxy+ exhibits superior scalability in terms of

Fig. 15. Performance under strong scaling setup.

FLOPS as the number of devices increases, demonstrating its
more efficient resource utilization.

2) Strong Scaling: In a strong scaling setup, the global work-
load is independent of the number of participating devices.
We fix the sequence length to a constant value of 384. As
depicted in Fig. 15, we measure the average inference latency
per Transformer layer for a varying number of edge devices.
Galaxy+ also demonstrates superior scalability under a strong
scaling setup. Specifically, Galaxy+ achieves 2.9× inference
latency reduction compared to Local Inference in GPT2-L case,
while achieving 3.12× inference latency reduction compare to
Local Inference in OPT-L case.

F. On-the-Fly HMP Re-Scheduling

We evaluate our on-the-fly fault-tolerant re-scheduling mod-
ule on the GPT-L model using a realistic edge cluster consisting
of one RPi-M and two RPi-L devices. As shown in Fig. 16, we
applied an external CPU workload consisting of mobile DNN
training and inference on one of the RPi-L devices at the 50-th
timestamp (Fig. 16(a)), simulating resource contention caused
by another edge intelligent application. Without fault-tolerant
re-scheduling, the external CPU workload significantly reduces
this device’s computational capacity for collaborative inference,
making it a straggler. As a result, it starves the other two devices
and severely degrades the system’s overall parallel efficiency
(Fig. 16(b) and (c)), leading to a significant drop in overall infer-
ence throughput (Fig. 16(d)). In contrast, with our re-scheduling
module, the collaborative inference system temporarily removes
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Fig. 16. When Device 1 experiences an external load spike, Galaxy+’s on-
the-fly fault-tolerant module will swiftly re-schedule and restore inference.

the unavailable devices and redistributes its workload to remain-
ing devices. Removing the straggler device improve resource
utilization of the remaining nodes, significantly enhances overall
inference throughput (Fig. 16(d)).

V. RELATED WORK

Edge AI with Transformer-Based LLMs. Transformer-based
LLMs have driven diverse intelligence in today’s edge intelligent
applications [3], ranging from AI assistants in smart homes [4]
and voice-controlled robots in smart factories [5] to intelligent
traffic management systems and urban planning tools in smart
cities [6]. urrent LLM-empowered edge applications predom-
inantly rely on cloud data centers for deployment [48], [49].
However, a recent survey on LLM-based edge applications [11]
indicates that more than 80% of industry experts advocate for
personal LLMs to be fully or primarily deployed at the edge,
emphasizing the critical need for privacy-preserving model in-
ference. Consequently, emerging research efforts have begun
to explore direct deployment and serving of Transformer-based
LLMs on local edge devices [14].

On-Device Inference Acceleration. Deploying DNN on edge
devices not only reduces latency and enhances user experience
but also addresses privacy concerns by enabling local data pro-
cessing. Pipe-It and Asymo [18], [19] scheduling workload ac-
cording to the computing power of asymmetry mobile CPU cores
to achieve higher throughput. BlastNet, CoDL and µlayer [12],
[20], [50] perform a collaborative DNN inference on mobile
CPU and GPU concurrently. Band [51] coordinates multi-DNN
inference on heterogeneous mobile processors. Recent advances
have explored deploying Transformer-based LLMs on edge
devices, with research efforts primarily focusing on both al-
gorithmic optimization and system-level enhancement. From
an algorithmic perspective, significant progress has been
made in reducing computational complexity through model

quantization [52], structural pruning [53], and knowledge
distillation [54]. Concurrently, system-level approaches have
emerged to fully leverage the computational potential of edge
devices. Mllm-NPU [55] focuses on the prevalent decoder-only
transformer architecture of LLMs, introducing an inference sys-
tem optimized for efficient mobile NPU offloading. PowerInfer
and PowerInfer-2 [56], [57] introduce a NPU-GPU-CPU hybrid
inference system designed to accelerate computations on a single
personal computer or mobile device.

Collaborative Execution of Transformer. Data Paral-
lelism [30], [58] is the most extensively used distributed training
approach in datacenters. Pipeline Parallelism is further pro-
posed to conquer the memory issues of training large-scale
transformer-based models [31], [35], but suffers from pipeline
bubbles. Model Parallelism simultaneously tackles both mem-
ory and bubble issues, and is widely used in both training [34],
[35], [59] and inference [7], [28], [60] tasks at datacenters.
However, few of above approaches are designed for in-situ
Transformer-based model inference at the edge. In addition to
running entirely in cloud datacenter, pioneering research has
explored leveraging edge devices as a collaborative resource
pool to accelerate Transformer training and inference directly
at the edge. Asteroid [61] introduces a pioneering distributed
edge training system to accelerate full-parameter tuning for both
CNNs and Transformer-based LLMs. Pluto and Charon [62]
further integrate parameter-efficient fine-tuning techniques into
edge collaborative training to reduce computational and memory
demands. Galaxy [37] presents a collaborative edge AI system
for low-latency Transformer-based model inference, enabling
real-time in-situ intelligent services. DeTransformer [63] in-
troduces a decoupled layer to minimize tensor synchronization
overhead, but it necessitates full parameter tuning of the target
model’s parameters.

Communication Optimization for Distributed Deep Learning.
ZeRO++ [64] utilizes quantized communication to reduce the
overhead of tensor synchronization. Hermes [65] applies model
structured pruning techniques to achieve communication vol-
ume reduction. FeS and AdaFL [66], [67] utilize parameter-
efficient fine-tuning techniques to reduce the number of pa-
rameters that need synchronization during distributed federated
learning of Transformer-based DNNs, thereby minimizing com-
munication overhead. CoCoNet, ASE, and Liger [68], [69], [70]
leverage computation-communication overlap to mitigate the
impact of communication latency on system performance.

VI. CONCLUSION

This paper introduces Galaxy+, an innovative collaborative
in-situ Transformer inference system featuring a hybrid model
parallelism architecture, a heterogeneity and memory-budget
aware parallelism planning algorithm, and a tile-based com-
munication optimization. Our extensive evaluation shows that
Galaxy+ achieves a 1.2× to 4.24× performance improvement
over state-of-the-art parallel inference methods across various
edge environment setups and network bandwidth conditions.
Galaxy+ can also adapt to device-level resource dynamics,
swiftly rescheduling and restoring inference.
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